首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7247篇
  免费   477篇
  国内免费   20篇
  2023年   95篇
  2022年   152篇
  2021年   369篇
  2020年   376篇
  2019年   560篇
  2018年   443篇
  2017年   309篇
  2016年   387篇
  2015年   410篇
  2014年   504篇
  2013年   638篇
  2012年   607篇
  2011年   593篇
  2010年   311篇
  2009年   274篇
  2008年   297篇
  2007年   293篇
  2006年   255篇
  2005年   209篇
  2004年   166篇
  2003年   115篇
  2002年   104篇
  2001年   17篇
  2000年   13篇
  1999年   18篇
  1998年   18篇
  1997年   16篇
  1996年   15篇
  1995年   6篇
  1994年   10篇
  1993年   13篇
  1992年   6篇
  1991年   14篇
  1990年   6篇
  1989年   11篇
  1988年   8篇
  1987年   12篇
  1986年   12篇
  1985年   13篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1976年   3篇
  1974年   7篇
  1973年   3篇
  1972年   2篇
  1963年   2篇
  1962年   2篇
排序方式: 共有7744条查询结果,搜索用时 15 毫秒
1.
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.  相似文献   
2.
3.
4.
Flap endonuclease 1 (FEN1) has emerged as an important enzyme in the maintenance of genomic instability and preventing carcinogenesis. The relationship between FEN1 −69G>A (rs174538)+4150G>T (rs4246215) polymorphisms and cancer susceptibility has been reported; however, results were inconclusive. In the present study, a meta-analysis of data from eligible reports was carried out to summarize the possible relationship between FEN1 polymorphisms and cancer risk. A total of 11 articles, including 20 studies with 7366 cases and 9028 controls and 18 studies with 6649 cases and 8325 controls for FEN1 rs174538 and FEN1 rs4246215 polymorphisms, respectively, were recruited for meta-analysis. Overall, meta-analyses showed that FEN1 rs174538 and rs4246215 polymorphisms are significantly associated with the decreased risk of cancer. The stratified analysis proposed that both variants were associated with protection against gastrointestinal cancer, breast cancer, hepatocellular cancer, esophageal cancer, gastric cancer, colorectal cancer, and lung cancer. In conclusion, this meta-analysis revealed an association between FEN1 polymorphisms and cancer risk. Additional studies in a larger study population that include subjects from a variety of ethnicities are warranted to further verify our findings.  相似文献   
5.
Plasmid mediated quinolone resistance (PMQR) determinants have arisen as a significant concern in recent years. The aim of this study was screening of resistant-clinical isolates to fluoroquinolone antibiotics and detection of qnr and aac(6′)-Ib-cr genes.For this purpose we collected 100 fluoroquinolone-resistant Enterobacteriaceae which were from 3 hospitals in Hamadan, west provinces of Iran, between October 2012 and June 2013. The all samples were identified by biochemical tests and confirmed by PCR method. Antimicrobial susceptibility to 14 antimicrobial agents including levofloxacin and ciprofloxacin were determined by disk diffusion methods and ciprofloxacin MIC was obtained by broth microdilution method as Clinical Laboratory Standards Institute (CLSI) recommendations. The isolates were screened for the presence of qnrA, qnrB, qnrS and aac(6′)-Ib-cr genes using PCR assay. Among the screened isolates, 64 strains (64%) of Escherichia coli, 23 strains (23%) of Klebsiella pneumoniae, 13 strains (13%) of Proteus mirabilis were collected as quinolone-resistant isolates. out of 100 isolates, two (2%) were positive for qnrS, seventeen (17%) isolates were positive for qnrB and we did not find qnrA gene in any of the isolates. There were also 32 positive isolates for aac(6′)-Ib-cr determinant. We described the prevalence of qnr and aac(6′)-Ib-cr genes in fluoroquinolone-resistant Enterobacteriaceae in Hamadan city. The carriage rate of multidrug-resistant Enterobacteriaceae in healthy people in Hamadan City is extremely high. Moreover, genes encoding transferable quinolones, in particular aac(6′)-Ib-cr, are highly prevalent in these strains.  相似文献   
6.

Plant nutrition management is known as an efficient strategy to control environmental constraints. This experiment was conducted in a climate control greenhouse with a hydroponic system. The high temperature (36 °C?±?1) was imposed on the pots after fruit formation. The studied factors were silicon in 2 concentrations (0 and 4 parts per thousand (ppt)) and salicylic acid in 3 concentrations (0, 0.5, and 1 mM). They were sprayed on cucumber plants 3 times and under high-temperature conditions to evaluate if they can regulate and improve the yield and quality of cucumber fruit under high-temperature conditions or not. The results showed that all treatments significantly improved the nutritional status, total yield, and fruit quality (including marketable yield (i.e., fruits that can be sold due to their good shape) and nitrate content). Under high-temperature conditions, foliar application of silicon had the highest effect on the increase of total yield and marketable fruit yield (respectively, 36.14% and 40.29% increase compared to the control treatment). Micro-nutrients concentrations in the leaf were significantly increased by Si but a reverse status happened for salicylic acid. Under high temperatures, both treatments also significantly decreased the nitrate content of the fresh matter of fruit but silicon was the superior treatment. Silicon and salicylic acid, respectively, had positive effects on mitigation of adverse effects of high temperature on cucumber plants. These findings suggest the use of these treatments under high-temperature conditions in greenhouse cucumber production.

Graphical Abstract

N–No3 content in dry matter of leaf (left) and fresh matter of fruit (right) affected by different treatments. *SaA0–SiA4: 4 ppt Si; SaA0.5–SiA0: 0.5 mM SA; SaA0.5–SiA4: 0.5 mM SA?+?4 ppt Si; SaA1–SiA0: 1 mM SA; SaA1–SiA4: 1 mM SA?+?4 ppt Si; control: without any SA and Si applications. Means in the same column followed by the same letter are not significantly different according to DMRT at (P?≤?0.05)

  相似文献   
7.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
8.
9.
Flavonoids comprise a group of natural polyphenols consisting of more than 5,000 subtypes mostly existing in fruits and vegetables. Flavonoids consumption could potentially attenuate the incidence and recurrence risk of colorectal cancers through their antiperoxidative, antioxidant, and anti-inflammatory effects. In addition, these compounds regulate the mitochondrial function, balance the bacterial flora and promote the apoptosis process in cancerous cells. However, some previous data failed to show the effectiveness of flavonoids in reducing the risk of colorectal cancer. In this study, we have reviewed the efficacy of different flavonoids subtypes on the risk of colon cancer and molecular mechanisms involved in this process in both clinical and animal studies. In addition, we tried to elucidate the potential synergy between these compounds and current colorectal cancer treatments.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号