首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2017年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A cDNA of 417 bp encoding an S-RNase gene, named PA S3, was isolated from apricot, Prunus aremeniaca. Nine S-alleles, S1–S9, were recognized by S-allele-specific PCR and confirmed by Southern blot analysis using PA S3 as probe. The S-genotypes of the six cultivars were determined and the results of self- and cross-pollination tests among the six cultivars were consistent with the predicted S-haplotypes by PCR analysis.  相似文献   
2.
To prevent self-fertilization, apple has a gametophytic self-incompatibility mechanism, part of a widespread intraspecific system, that is controlled by a multi-allelic locus. This attribute has been exploited in breeding programs for new cultivars. Likewise, many apple orchards depend on artificial pollination. Therefore, molecular analysis and early identification of the self-incompatibility (S) genotype could greatly improve breeding schemes and pollen donors selection. Here, we PCR-amplified the S-RNase PCR fragments from a total of 14 cultivars and parents, using new primers (ASPF3+ASPR3) common to 23 S-alleles in apple. The S-genotypes were determined for the following: ‘Hongro’ (S1S3), ‘Gamhong’ (S1S9), ‘Saenara’ (S1S3), ‘Chukwang’ (S3S9), ‘Hwahong’ (S3S9), ‘Seokwang’ (S3S3), ‘Hwarang’ (S1S9), ‘Sunhong’ (S3S9), ‘S.E.B.’ (S1S19), ‘S.G.D.’ (S2S3), and ‘Mollie’s Delicious’ (S3S7). We also confirmed the characteristics of the S-genotypes for eight Korean apple cultivars by PCR-Southern blot analysis, using seven S-RNases as probes.  相似文献   
3.
Apple exhibits gametophytic self-incompatibility (GSI) that is controlled by the multiallelic S-locus. This S-locus encodes polymorphicS ribonuclease (S-RNase) for the pistil-part 5 determinant. Information aboutS-genotypes is important when selecting pollen donors for fruit production and breeding of new cultivars. We determined the 5-genotypes of ‘Charden’ (S2S3S4), ‘Winesap’ (S1S28), ‘York Imperial’ (S2S31), ‘Stark Earliblaze’ (S1S28), and ‘Burgundy’ (S20S32), byS-RNase sequencing and S-allele-specific PCR analysis. Two newS-RNases, S31 and S32, were also identified from ‘York Imperial’ and ‘Burgundy’, respectively. These newS-alleles contained the conserved eight cysteine residues and two histidine residues essential for RNase activity. Whereas S31 showed high similarity to S20 (94%), S32 exhibited 58% (to S24) to 76% (to S25) similarity in the exon regions. We designed newS-allele-specific primers for amplifying S31- and S32-RNasc-specific fragments; these can serve as specific gene markers. We also rearranged the apple S-allele numbers containing those newS-RNases. They should be useful, along with anS-RNase-based PCR system, in determining S-genotypes and analyzing new alleles from apple cultivars.  相似文献   
4.
基于cDNA芯片的梨品种S基因型鉴定及新S-RNase基因进化分析   总被引:1,自引:0,他引:1  
梨品种S基因型鉴定对梨栽培中授粉品种选择和遗传育种都具有重要意义。本研究利用梨S-RNase基因荧光标记的特异引物PCR扩增获得梨品种荧光标记的cDNA特异产物;进一步完善梨S-RNase基因cDNA芯片,以被检测梨品种cDNA特异序列与梨S-RNase基因cDNA芯片杂交检测不同梨品种S基因型,并发现新的S-RNase基因。结果表明:利用梨S-RNase基因cDNA芯片鉴定了泸定王皮梨、兴山24号、弥渡百合等35个未知S基因型梨品种,确定了各品种的S基因型。结合PCRRFLP及DNA克隆和测序等技术,发现了7个新的S-RNase基因资源,获得了新S-RNase基因序列。序列分析表明各新S-RNase基因均具有S-RNase基因特异区域序列的典型特征;进化分析显示7个新S-RNase基因主要属于蔷薇科苹果亚科S-RNase类群,且存在种间和属间比种内和属内进化关系更近的现象。7个新的S基因分别命名为:PpS_(53)(Pyrus pyrifolia S53)、PpS_(54)、PpS_(55)、PpS_(56)、PpS_(57)、PpS_(58)和PpS_(59),GenBank登录号分别为:KX581753、KX581754、KX581755、KX581756、KX581757、KX581751和KX581752。  相似文献   
5.
梨是配子体型自交不亲和植物,确定不同品种的S基因型是科学杂交授粉及提高梨产量和品质的基础。本文根据砂梨S1-9等位基因一级结构特征,设计特异引物PF和PR,以白梨(Pyrus bretschneideri)种鹅梨(Pyrus bretschneideri‘Eli’)和砂梨(Pyrus pyrifolia)品种博多青(Pyrus pyrifolia‘Hakataao’)的叶片基因组DNA为模板,通过PCR·RFLP系统检测、克隆测序以及生物信息学分析,分离鉴定了它们的片段大小相似的2条S等位基因,从中获得1条新的S基因,命名为S34-RNase基因,并确定了这2个梨品种的S基因型,分别为鹅梨S13S34和博多青S22S34。  相似文献   
6.
确定梨自交不亲和基因型研究的技术进展   总被引:1,自引:0,他引:1  
综述了运用杂交授粉试验和分子生物学方法等技术确定梨品种自交不亲和基因型研究的技术进展,分析了这些技术在确定梨品种自交不亲和基因型方面的优点和不足之处,并初步探讨了研究前景。因为HV区氨基酸的不同,不同S基因型也有所差异。因此,除了在分子生物学的水平上进行研究外,其他方法如mRNA、蛋白质和杂交授粉等水平上的研究在确定S基因型上也同样重要。  相似文献   
7.
Three partial S-RNase genes, MSRN-1, MSRN-2, and MSRN-3, in the Japanese apricot (Prunus mume Sieb. et Zucc.) were isolated from the three cultivars Nankou, Gyokuei, and Kairyouuchidaume, respectively. The structural characteristics revealed that S-RNase genes from the Japanese apricot were in the T2/SRNase-type S-RNase family with five conserved regions (C1, C2, C3, RC4, and C5) and one variable region (RHV) as reported in the other rosaceous plants. In the phylogenetic tree of T2/S SRNase-type RNases, three S-RNase genes of the Japanese apricot did not form a species-specific subgroup but the Prunus subfamily did. At least seven S-allelic genes were present in the Japanese apricot, and S-genotypes of six representative cultivars, including Nankou, Gyokuei, Kairyouuchidaume, Baigou, Kagajizou, and Oushuku were first established in this study as S 1 S 7, S 2 S 6, S 3 S 4, S 3 S 6, S 3 S 6 and S 1 S 5, respectively. An extended elucidation of the S-genotype would contribute to a more efficient breeding program of the Japanese apricot. Received: 5 September 2000 / Revision accepted: 22 December 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号