首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2004年   6篇
  1992年   1篇
  1988年   2篇
  1986年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
It has been difficult to examine the role of TGF-ß in post-natal tooth development due to perinatal lethality in many of the signaling deficient mouse models. To address the role of Tgfbr2 in postnatal tooth development, we generated a mouse in which Tgfbr2 was deleted in odontoblast- and bone-producing mesenchyme. Osx-Cre;Tgfbr2fl/fl mice were generated (Tgfbr2cko) and post-natal tooth development was compared in Tgfbr2cko and control littermates. X-ray and μCT analysis showed that in Tgfbr2cko mice radicular dentin matrix density was reduced in the molars. Molar shape was abnormal and molar eruption was delayed in the mutant mice. Most significantly, defects in root formation, including failure of the root to elongate, were observed by postnatal day 10. Immunostaining for Keratin-14 (K14) was used to delineate Hertwig's epithelial root sheath (HERS). The results showed a delay in elongation and disorganization of the HERS in Tgfbr2cko mice. In addition, the HERS was maintained and the break up into epithelial rests was attenuated suggesting that Tgfbr2 acts on dental mesenchyme to indirectly regulate the formation and maintenance of the HERS. Altered odontoblast organization and reduced Dspp expression indicated that odontoblast differentiation was disrupted in the mutant mice likely contributing to the defect in root formation. Nevertheless, expression of Nfic, a key mesenchymal regulator of root development, was similar in Tgfbr2cko mice and controls. The number of osteoclasts in the bone surrounding the tooth was reduced and osteoblast differentiation was disrupted likely contributing to both root and eruption defects. We conclude that Tgfbr2 in dental mesenchyme and bone is required for tooth development particularly root formation.  相似文献   
2.
TGF-β subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-β signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-β signaling contributes to the terminal differentiation of odontoblast and dentin formation during tooth morphogenesis. Towards this end, we generated mice with conditional inactivation of the Tgfbr2 gene in cranial neural crest derived cells. Odontoblast differentiation was substantially delayed in the Tgfbr2fl/fl;Wnt1-Cre mutant mice at E18.5. Following kidney capsule transplantation, Tgfbr2 mutant tooth germs expressed a reduced level of Col1a1 and Dspp and exhibited defects including decreased dentin thickness and absent dentinal tubules. In addition, the expression of the intermediate filament nestin was decreased in the Tgfbr2 mutant samples. Significantly, exogenous TGF-β2 induced nestin and Dspp expression in dental pulp cells in the developing tooth organ. Our data suggest that TGF-β signaling controls odontoblast maturation and dentin formation during tooth morphogenesis.  相似文献   
3.
The heparin binding molecules MK and HB-GAM are involved in the regulation of growth and differentiation of many tissues and organs. Here we analyzed the expression of MK and HB-GAM in the developing mouse incisors, which are continuously growing organs with a stem cell compartment. Overlapping but distinct expression patterns for MK and HB-GAM were observed during all stages of incisor development (initiation, morphogenesis, cytodifferentiation). Both proteins were detected in the enamel knot, a transient epithelial signaling structure that is important for tooth morphogenesis, and the cervical loop where the stem cell niche is located. The functions of MK and HB-GAM were studied in dental explants and organotypic cultures in vitro. In mesenchymal explants, MK stimulated HB-GAM expression and, vice-versa, HB-GAM upregulated MK expression, thus indicating a regulatory loop between these proteins. BMP and FGF molecules also activated expression of both cytokines in mesenchyme. The proliferative effects of MK and HB-GAM varied according to the mesenchymal or epithelial origin of the tissue. Growth, cytodifferentiation and mineralization were inhibited in incisor germs cultured in the presence of MK neutralizing antibodies. These results demonstrate that MK and HB-GAM are involved in stem cells maintenance, cytodifferentiation and mineralization processes during mouse incisor development.  相似文献   
4.
He H  Yu J  Liu Y  Lu S  Liu H  Shi J  Jin Y 《Cell biology international》2008,32(7):827-834
Two crucial growth factors, FGF2 and TGFbeta1, were investigated in this study to determine their inductive effects on the odontoblastic differentiation of human dental pulp stem cells (DPSCs) in vitro. DPSCs were isolated by immunomagnetic bead selection using the STRO-1 antibody, and then co-cultured respectively with FGF2, TGFbeta1 and FGF2+TGFbeta1. The results showed that FGF2 can exert a significant effect on the cell proliferation, while TGFbeta1 or FGF2+TGFbeta1 can initiate an odontoblast-like differentiation of DPSCs. Moreover, FGF2 can synergistically upregulate the effects of TGFbeta1 on the odontoblastic differentiation of DPSCs, as indicated by the increased alkaline phosphatase activity, the polarized cell appearance and secretary ultrastructural features, the formation of mineralized nodules and the gene/protein expression of dentin sialoprotein and dentin matrix protein-1. Together, FGF2 acted primarily on the cell proliferation, while TGFbeta1 and FGF2+TGFbeta1 mainly stimulated the odontoblastic differentiation of DPSCs. This study provides interesting progress in the odontoblastic differentiation of DPSCs induced by FGF2 and TGFbeta1.  相似文献   
5.
In an organ culture system under a three-dimensional microenvironment that provides the conditions needed for odontoblast differentiation, a row of odontoblasts can be induced (Kikuchi et al. 1996, 2001). Therefore, in a newly designed three-dimensional cell culture system that fulfils the conditions necessary for odontoblast differentiation (Kikuchi et al. 2002), we examined whether dental papilla cells in rat mandibular incisors could differentiate into tubular dentine-forming cells. In our previously established organ culture system, CM-Dil-labeled cells that were microinjected into isolated dental papillae were replaced by a row of odontoblasts. In a three-dimensional cell culture system, which consists of two kinds of type I collagen in the upper layer over multi-layered cells seeded onto collagen containing Matrigel in the lower layer and which acts as a structural meshwork, dental papilla cells were incubated as multi-layered cells in an artificial extracellular matrix (ECM). The cells aggregated to form a cell mass and invaginated as a cell mass into the ECM. The cells also extended fine fibrillar processes into the ECM. With regard to invagination, the proteolytic activities of matrix metalloproteinase-2 (MMP-2)/membrane type 1-matrix metalloproteinase (MT 1-MMP) were observed on the outer multi-layers of cells within a cell mass adjacent to the ECM. The cell mass progressively shrank to about one-half to one-third of its original diameter and was organized as a tissue surrounded by a newly secreted ECM, like dental pulp-dentine. The cells adjacent to the secreted ECM were constructed as a row of polarized columnar cells. They extended slender processes into the new ECM, which is characteristic of tubular matrix. Dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP 1) genes, which are specific for odontoblast differentiation, were expressed in an aggregated cell mass where tubular matrix-forming cells were induced. Furthermore, the tubular matrix became mineralized under prolonged culture. These results imply that the putative progenitor cells/stem cells residing in dental papillae can differentiate into odontoblasts under appropriate conditions in vitro.  相似文献   
6.
7.
8.
9.
Summary Odontoblast-like cells derived from human tooth pulps were maintained in expiant culture and grown either on glass coverslips only (used as control) or on glass coverslips coated with cyanoacrylate films. Ultrastructural and cyto-morphometric evidence showed that cells exposed to cyanoacrylate, in contrast to controls, display a significant decrease of rough endoplasmic reticulum and mitochondria. In addition, immunofluorescent staining and radioimmunoassays for type-I collagen suggested disturbances in production for the exposed cells. The use of anti-fibronectin antibodies with electron-microscopic immunoperoxidase-labelling demonstrated that the adherence of cells to cyanoacrylate can involve both adhesion plaques and fibronectin. These results therefore suggest that there were no apparent differences in the adhesion interaction of cells between glass and cyanoacrylate substrates.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号