首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   25篇
  国内免费   12篇
  2023年   5篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   11篇
  2010年   5篇
  2009年   13篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1992年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1985年   1篇
  1973年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
1.
C4 perennial grasses are being considered for bioenergy because of their high productivity and low inputs. In side-by-side replicated trials, Miscanthus ( Miscanthus x giganteus ) has previously been found more than twice as productive as switchgrass ( Panicum virgatum ). The hypothesis that this difference is attributable to higher leaf photosynthetic rates was tested on established plots of switchgrass and Miscanthus in central Illinois with >3300 individual measurements on 20 dates across the 2005 and 2006 growing seasons. Seasonally integrated leaf-level photosynthesis was 33% higher in Miscanthus than switchgrass ( P  < 0.0001). This increase in carbon assimilation comes at the expense of additional transpiration since stomatal conductance was on average 25% higher in Miscanthus ( P  < 0.0001). Whole-chain electron transport rate, measured simultaneously by modulated chlorophyll fluorescence, was similarly 23% higher in Miscanthus ( P  < 0.0001). Efficiencies of light energy transduction into whole chain photosynthetic electron transport, leaf nitrogen use and leaf water use were all significantly higher in Miscanthus. These may all contribute to its higher photosynthetic rates, and in turn, productivity. Systematic measurement of photosynthesis over two complete growing seasons in the field provides a unique dataset explaining why the productivity of these two species differs and for validating mechanistic production models for these emerging bioenergy crops.  相似文献   
2.
Increasing crop productivity to meet rising demands for food and energy, but doing so in an environmentally sustainable manner, is one of the greatest challenges for agriculture to date. In Ireland, Miscanthus × giganteus has the potential to become a major feedstock for bioenergy production, but the economic feasibility of its cultivation depends on high yields. Miscanthus fields can have a large number of gaps in crop cover, adversely impacting yield and hence economic viability. Predominantly positive effects of Miscanthus on biodiversity reported from previous research might be attributable to high crop patchiness, particularly during the establishment phase. The aim of this research was to assess crop patchiness on a field scale and to analyse the relationship between Miscanthus yield and species richness and abundance of selected taxa of farmland wildlife. For 14 Miscanthus fields at the end of their establishment phase (4–5 years after planting), which had been planted either on improved grassland (MG) or tilled arable land (MT), we determined patchiness of the crop cover, percentage light penetration (LP) to the lower canopy, Miscanthus shoot density and height, vascular plants and epigeic arthropods. Plant species richness and noncrop vegetation cover in Miscanthus fields increased with increasing patchiness, due to higher levels of LP to the lower canopy. The species richness of ground beetles and the activity density of spiders followed the increase in vegetation cover. Plant species richness and activity density of spiders on both MT and MG fields, as well as vegetation cover and activity density of ground beetles on MG fields, were negatively associated with Miscanthus yield. In conclusion, positive effects of Miscanthus on biodiversity can diminish with increasing productivity. This matter needs to be considered when assessing the relative ecological impacts of developing biomass crops in comparison with other land use.  相似文献   
3.
In light of rising energy costs, lignocellulosic ethanol has been identified as a renewable alternative to petroleum-based transportation fuels. In an attempt to reach government mandated ethanol production levels, potential plant biofeedstock candidates have been investigated, and cold-tolerant, perennial accessions within the C4 grass genus Miscanthus have been identified as leading contenders in the Midwestern US. To facilitate the development of improved cultivars through marker-assisted breeding, a quantitative trait locus (QTL) study was conducted on a full-sib, F1 mapping population segregating for flowering time, height, leaf width, and yield using a genetic map consisting of 846 segregating SNP and SSR markers. This was a 3 year study investigating the genetic architecture underlying traits important to biomass production in a population of 221 progeny from a cross between M. sinensis ‘Grosse Fountaine’ and M. sinensis ‘Undine’ established in the spring of 2010; 72 QTLs with LOD scores above the genome-wide, permuted threshold equivalent to a P-value of 0.05 were identified across 13 traits. Of the 36 QTLs identified in 2011, 22 were detected again the following year. Both the use of spring emergence and vigor rating as a covariate to account for variation related to differences in establishment increased the power to detect QTLs in the 2 year establishment period. Finally, a dry period in the middle of the 2012 growing season suggested that yield declines were due to a decrease in tiller diameter.  相似文献   
4.
Energy crops offer an opportunity to substantially increase bioenergy resources which can replace rapidly depleting fossil fuel reserves and mitigate the effect of climate change. Energy crops are typically established within traditional agricultural systems such as tillage land or grassland. Associated land use conversion has environmental implications. The aim of this paper is to propose a framework to examine how such environmental implications can be assessed, based on (a) a Strategic Environmental Assessment (SEA) approach which considers potential impacts at different stages of a plan across a wide range of environmental receptors and (b) a literature review. The example we used was that of Miscanthus replacing grassland farming. This scenario is particularly relevant to Ireland, where over 90% of the agricultural land is permanent pasture, but is also applicable to grassland conversion throughout Europe and the United States. Two consecutive phases of land‐use change were identified for assessment, each with a distinct set of environmental impacts. The first was a transition phase, lasting from initial livestock clearance and grassland ploughing until the Miscanthus crop became established (2–3 years). The second phase was the mature crop phase, lasting up to 25 years. Miscanthus cultivation was more likely to impact negatively on the environment during the transition phase than the mature phase, primarily due to abrupt disturbance and the time required for a new equilibrium to establish. However, a literature review of the impact on the environmental receptors revealed that replacing Irish agricultural grassland with Miscanthus had the potential to improve biodiversity, water, air and soil quality, and climatic factors once the crop became established and reached maturity. In order to confirm these findings an appropriate monitoring programme involving objectives and indicators associated with each environmental receptor would need to be developed.  相似文献   
5.
European field experiments have demonstrated Miscanthus can produce some of the highest energy yields per hectare of all potential energy crops. Previous modelling studies using MISCANMOD have calculated the potential energy yield for the EU27 from mean historical climate data (1960–1990). In this paper, we have built on the previous studies by further developing a new Miscanthus crop growth model MISCANFOR in order to analyse (i) interannual variation in yields for past and future climates, (ii) genotype-specific parameters on yield in Europe. Under recent climatic conditions (1960–1990) we show that 10% of arable land could produce 1709 PJ and mitigate 30 Tg of carbon dioxide-carbon (CO2-C) equivalent greenhouse gasses (GHGs) compared with EU27 primary energy consumption of 65 598 PJ, emitting 1048 Tg of CO2-C equivalent GHGs in 2005. If we continue to use the clone Miscanthus × giganteus , MISCANFOR shows that, as climate change reduces in-season water availability, energy production and carbon mitigation could fall 80% by 2080 for the Intergovernmental Panel on Climate Change A2 scenario. However, because Miscanthus is found in a huge range of climates in Asia, we propose that new hybrids will incorporate genes conferring superior drought and frost tolerance. Using parameters from characterized germplasm, we calculate energy production could increase from present levels by 88% (to 2360 PJ) and mitigate 42 Tg of CO2-C equivalent using 10% arable land for the 2080 mid-range A2 scenario. This is equivalent to 3.6% of 2005 EU27 primary energy consumption and 4.0% of total CO2 equivalent C GHG emissions.  相似文献   
6.
7.
Species and hybrids of Miscanthus are a promising energy crop, but their outcrossing mating systems and perennial life cycles are serious challenges for breeding programs. One approach to accelerating the domestication of Miscanthus is to harness the tremendous genetic variation that is present within this genus using phenotypic data from extensive field trials, high‐density genotyping and sequencing technologies, and rapidly developing statistical methods of relating phenotype to genotype. The success of this approach, however, hinges on detailed knowledge about the population genetic structure of the germplasm used in the breeding program. We therefore used data for 120 single‐nucleotide polymorphism and 52 simple sequence repeat markers to depict patterns of putatively neutral population structure among 244 Miscanthus genotypes grown in a field trial near Aberystwyth (UK) and delineate a population of 145 M . sinensis genotypes that will be used for association mapping and genomic selection. Comparative multivariate analyses of molecular marker and phenotypic data for 17 traits related to phenology, morphology/biomass, and cell wall composition revealed significant geographic patterns in this population. A longitudinal cline accounted for a substantial proportion of molecular marker variation (R2 = 0.60, = 3.4 × 10?15). In contrast, genetic variation for phenotypic traits tended to follow latitudinal and altitudinal gradients, with several traits appearing to have been affected by divergent selection (i.e., QST >> FST). These contrasting geographic trends are unusual relative to other plants and provide opportunities for powerful studies of phenotype–genotype associations and the evolutionary history of M. sinensis.  相似文献   
8.
利用33对SSR引物对来自中国16个省的46份野生芒(Miscanthus sinensis)种质进行遗传多样性分析。结果显示:(1)33对SSR引物共扩增出87条DNA条带,75条为多态性条带,占86.21%,条带大小范围80~310 bp;(2)遗传多样性参数分析结果:Shannon’s信息指数(I)变幅为0.020~1.522,平均为0.745,引物多态性信息含量(PIC)变幅为0.040~0.738,平均为0.445,遗传相似系数(GS)的变幅为0.315~0.933,平均为0.569,说明我国芒种质资源遗传基础宽,遗传多样性丰富;(3)相似系数UMPGA聚类结果与主成分分析(PCA)结果一致,可将46份种质分为3大类群,类群Ⅰ主要由中部芒组成,类群Ⅱ主要由北方芒组成,类群Ⅲ主要由南方芒组成,西南芒在每个类群中均有渗透,这一结果说明芒种质资源的遗传分化与其种源的地理分布有一定的相关性,但与地理起源不能完全吻合。  相似文献   
9.
Cultured crown gall cells of Catharanthus roseus Don (Vinca rosea L.) was found to contain brassinosteroids. These were identified as brassinolide and castasterone by GC/MS. This is the first conclusive identification of endogenous brassinosteroids in cultured cells.  相似文献   
10.
Reliable estimates of feedstock resources are a prerequisite to the establishment of a biomass based-industry for energy and non food products. Field trials in the European Union (EU) show that Miscanthus spp. can produce high yields. Here we use a model (MISCANMOD) coupled with a GIS environment to estimate the contribution that Miscanthus could make to projected national electricity consumption. We describe the integration of different data sets, transformation procedures, and spatial analyses using GIS to produce energy statistics for the EU-25. Overall, Miscanthus grown on the 10% of arable land which is currently in set-aside could generate 282 TWh yr−1 electricity. This would meet 39% of the EU-25 target of 723 TWh yr−1 of electricity from renewable energy sources (RES) by 2010. As RES targets rise, land available for energy crops is also expected to increase. We consider three additional scenarios where Miscanthus could be grown on 10%, 20% and 35% of all agricultural land and we estimate it could generate respectively 345, 691 and 1209 TWh yr−1 of electrical energy. At a national scale France, Poland and Germany have the highest potentials for Miscanthus production based on agricultural land area (respectively 83, 52, 49 TWh yr−1 when 10% agricultural land is used). Finally, we reduced the scale to the EU NUTS2 (Nomenclature of Territorial Units for Statistics) regions to examine regional generation capacities. Key regions have been identified where national RES targets are exceeded. These regions could become net exporters of renewable energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号