首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2004年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
2.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   
3.
Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.  相似文献   
4.
5.
6.
Summary Meiosis and sporulation in yeast are subject to two types of regulation. The first depends on environmental conditions. The second depends on a genetic pathway which involves the control of the positive regulatory gene IME1 by RME1, which is in turn controlled by the MAT locus. The presence of IME1 on a multicopy plasmid enables cells to undergo meiosis regardless of their genotype at MAT or RME1. We show here that a multicopy plasmid carrying IME1 also enables meiosis, regardless of the environment. Therefore, both kinds of regulation appear to act through IME1. Furthermore, the behavior of multicopy plasmids carrying various segments from the IME1 region suggests that the region upstream of IME1 contains both positive and negative regulatory sites. Control of IME1 by the environment and by the MAT pathway both act through negative regulatory sites.  相似文献   
7.
The genomic upstream sequence of the rice tubulin gene OsTub6 has been cloned, sequenced and characterized. The 5′UTR sequence is interrupted by a 446 bp long leader intron. This feature is shared with two other rice β-tubulin genes (OsTub4 and OsTub1) that, together with OsTub6, group in the same clade in the evolutionary phylogenetic tree of plant β-tubulins. Similarly to OsTub4, the leader intron of OsTub6 is capable of sustaining intron mediated enhancement (IME) of gene expression, in transient expression assays. A general picture is drawn for three rice α-tubulin and two rice β-tubulin genes in which the first intron of the coding sequence for the formers and the intron present in the 5′UTR for the latters, are important elements for controlling gene expression. We used OsTua2:GUS, OsTua3:GUS, OsTub4:GUS and OsTub6:GUS chimeric constructs to investigate the in vivo pattern of beta-glucuronidase (GUS) expression in transgenic rice plants. The influence of the regulatory introns on expression patterns was evaluated for two of them, OsTua2 and OsTub4. We have thus characterized distinct patterns of expression attributable to each tubulin isotype and we have shown that the presence of the regulatory intron can greatly influence both the amount and the actual site of expression. We propose the term Intron Dependent Spatial Expression (IDSE) to highlight this latter effect. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
8.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   
9.
p97/CDC48 is a major AAA-ATPase that acts in many cellular events such as ubiquitin-dependent degradation and membrane fusion. Its specificity depends on a set of adaptor proteins, most of them containing the ubiquitin regulatory X (UBX) domain. Using a differential hybridization system, we isolated a UBX-containing protein that is expressed during the early phase of male gametophyte development in the crop Brassica napus and isolated and characterized its closest Arabidopsis thaliana homolog, AtPUX7. The AtPUX7 gene is expressed broadly in both the sporophyte and gametophyte due to regulation inferred by its first intron. The subcellular localization of AtPUX7 was assigned mainly to the nucleus in both the sporophyte and in pollen, mirroring the AAA-ATPase AtCDC48A localization. Furthermore, AtPUX7 interacts specifically with AtCDC48A in yeast as well as in planta in the nucleus. This interaction was mediated through the AtPUX7 UBX domain, which is located at the protein C-terminus, while an N-terminal UBA domain mediated its interaction with ubiquitin. Consistent with those results, a yeast-three hybrid analysis showed that AtPUX7 can act as a bridge between AtCDC48A and ubiquitin, suggesting a role in targeted protein degradation. It is likely that AtPUX7 acts redundantly with other members of the Arabidopsis PUX family because a null Atpux7-1 mutant does not display obvious developmental defects.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号