首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  2023年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 171 毫秒
1
1.
L. Wu  H. Qiao  Y. Li  L. Li   《Phytomedicine》2007,14(10):652-658
Ischemic heart diseases have been the leading cause of death in both developed and developing countries over the past decades. The aim of this study was to investigate the cardioprotective effects of the complex preparation (called Shenge), made of puerarin (isolated from Pueraria lobata Ohwi., also called Kudzu) and Danshensu (isolated from the Chinese herb, Salvia miltiorrhiza), on acute ischemic myocardial injury in rats and its underlying mechanisms. The left anterior descending (LAD) coronary artery was occluded to induce myocardial ischemia in the hearts of SD rats. Shenge was injected into the tail vein 15 min after occlusion at doses of 0, 30, 60, or 120 mg/kg body wt. ST elevation was then measured at 60, 120, and 240 min after Shenge administration. The ischemic size, serum levels of creatine kinase isoenzyme-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA), and ST elevation were measured after the rats were sacrificed. Shenge decreased ST elevation induced by acute myocardial ischemia, reduced ischemic size, serum levels of CK-MB, LDH and MDA, and increased serum activity of SOD in a dose-dependent manner. The combined use of puerarin and Danshensu at a ratio of 1:1 showed the most effective activity. In conclusion, Shenge exerts significant cardioprotective effects against acute ischemic myocardial injury in rats, likely through its antioxidant and anti-lipid peroxidation properties, and thus may be an effective and promising medicine for both prophylaxis and treatment of ischemic heart disease.  相似文献   
2.
摘要 目的:探讨丹参素注射液对急性心肌梗死大鼠的心室重构、心室功能及肢体导联与胸导联心电图参数的影响。方法:选择SD大鼠40只,将其鼠随机模型组、假手术组、硝酸甘油组、丹参注射液组。假手术组大鼠给予只在冠状动脉处穿针,不进行结扎,其余步骤同其余3组,其余3组均进行动物模型构建。假手术组、模型组大鼠均腹腔注射氯化钠注射液,硝酸甘油组腹腔注射硝酸甘油,丹参注射液组腹腔注射丹参注射液。对比4组大鼠的肢体导联与胸导联心电图参数,对比4组大鼠的血液流变学指标、左心室功能及左心室重构。结果:模型组的Ⅰ、Ⅱ、Ⅲ、aVL、aVF、V1、V2、V5、血浆粘度、纤维蛋白原、红细胞聚集指数、舒张末期室间隔厚度、左室舒张末期内径、左室收缩末期内径、左室舒张末期容积、左室收缩末期容积明显较假手术组、硝酸甘油组、丹参注射液组高,硝酸甘油、丹参注射液组以上指标明显较假手术组高,模型组的的左室舒张末期厚度、左室射血分数、左室短轴缩短率明显较假手术组、硝酸甘油组、丹参注射液组低,硝酸甘油、丹参注射液组的左室舒张末期厚度、左室射血分数、左室短轴缩短率明显较假手术组低。模型组的左心室重量指数、左心室截面直径明显较假手术组、硝酸甘油组、丹参注射液组高,硝酸甘油、丹参注射液组的左心室重量指数、左心室截面直径、梗死面积明显较假手术组高(P<0.05),硝酸甘油组与丹参注射液组以上指标对比无差异(P>0.05)。结论:丹参素注射液可改善急性心肌梗死大鼠的心室重构、左心室功能及肢体导联与胸导联心电图参数,可能与其可降低大鼠的血液流变学指标水平有关。  相似文献   
3.
The six phenolic constituents are water-soluble components extracted from the Chinese medical herb danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae). An liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based method has been developed for the simultaneous quantification of six phenolic constituents of danshen (magnesium lithospermate B (MLB), rosmarinic acid (RA) and lithospermic acid (LA), caffeic acid (CAA), protocatechuic aldehyde (3,4-dihydroxybenzaldehyde, Pal), 3,4-dihydroxyphenyllactic acid (danshensu)) in human serum with chloramphenicol as internal standard. The serum samples were treated by special liquid-liquid extraction, and the analytes were determined using electrospray negative ionization mass spectrometry in the multiple reaction monitoring (MRM) mode, with sufficient sensitivity to allow analysis of human serum samples generated following administration of a clinically relevant dose. Good linearity over the range 8-2048 ng/mL for six phenolic constituents was observed. The intra- and inter-day precisions (CV) of analysis were <13%, and the accuracy ranged from 88 to 116%. This quantitation method was successfully applied to a pharmacokinetic study of i.v. drip infusion of Danshen injection fluid in human.  相似文献   
4.
Myocardial hypertrophy has been linked to the development of a variety of cardiovascular diseases, and is a risk factor for myocardial ischemia, arrhythmias, and sudden cardiac death. The objective of the present study was to evaluate the cardioprotective effects of Danshensu (DSS), a water-soluble active component of Danshen, on cardiac hypertrophy in rats. We are the first to report that DSS reversed Cx43 down-regulation in ventricular tissue. Cardiomyopathy in rats was produced using isoproterenol (Iso) treatment (2.5 mg/kg/d, s.c.) for seven days. DSS (3 and 10 mg/kg/d, i.p.) and Valsartan (Val) (10 mg/kg, i.g.) were administered on days 4-7 of Iso-treatment. Heart weight index, hemodynamic parameters, and ECG II parameters were monitored and recorded; protein expression of left ventricular connexin 43 (Cx43) and the activity of the redox system were assayed, and arrhythmias were produced using a coronary ligation/reperfusion procedure. The results demonstrated that DSS treatment significantly decreased heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW) ratios. The protective role of DSS against Iso-induced myocardial hypertrophy was further confirmed using ECG. The incidences of ventricular tachycardia and ventricular fibrillation (VT, VF) and arrhythmic scores were higher in the model group and were suppressed by DSS. DSS decreased the serum and myocardium levels of creatine kinase, lactate dehydrogenase, and malondialdehyde (CK, LDH, and MDA) and increased serum activity of superoxide dismutase (SOD) in a dose-dependent manner. Cx43 expression in the left ventricle was down-regulated, and there was significant oxidative stress in this model of cardiomyopathy. DSS reversed the down-regulated Cx43 protein levels and showed potent anti-oxidative activities and cellular protection. These data demonstrate that DSS can prevent cardiac I/R injury and improve cardiac function in a rat model of hypertrophy, the effects partially resulting from antioxidants and the protection from Cx43 expression.  相似文献   
5.
The traditional Chinese medicine Danshensu (DSS) has a protective effect on cardiac ischaemia/reperfusion (I/R) injury. However, the molecular mechanisms underlying the DSS action remain undefined. We investigated the potential role of DSS in autophagy and apoptosis using cardiac I/R injury models of cardiomyocytes and isolated rat hearts. Cultured neonatal rat cardiomyocytes were subjected to 6 hrs of hypoxia followed by 18 hrs of reoxygenation to induce cell damage. The isolated rat hearts were used to perform global ischaemia for 30 min., followed by 60 min. reperfusion. Ischaemia/reperfusion injury decreased the haemodynamic parameters on cardiac function, damaged cardiomyocytes or even caused cell death. Pre‐treatment of DSS significantly improved cell survival and protected against I/R‐induced deterioration of cardiac function. The improved cell survival upon DSS treatment was associated with activation of mammalian target of rapamycin (mTOR) (as manifested by increased phosphorylation of S6K and S6), which was accompanied with attenuated autophagy flux and decreased expression of autophagy‐ and apoptosis‐related proteins (including p62, LC3‐II, Beclin‐1, Bax, and Caspase‐3) at both protein and mRNA levels. These results suggest that alleviation of cardiac I/R injury by pre‐treatment with DSS may be attributable to inhibiting excessive autophagy and apoptosis through mTOR activation.  相似文献   
6.
Chan K  Chui SH  Wong DY  Ha WY  Chan CL  Wong RN 《Life sciences》2004,75(26):3157-3171
Homocysteine (Hcy) is a by-product of methionine metabolism. An imbalance of Hcy in the body may lead to hyperhomocysteinemia, a condition with elevated Hcy concentration in blood that may be one of the risk factors responsible for the development of several vascular diseases (thromboembolism, atherosclerosis, stroke, vascular diseases and dementia). Radix Salvia miltiorrhiza (Danshen), a well-known Chinese medicinal herb that can activate and improve blood microcirculation, is noticeable for its beneficial effect in treating cardiovascular diseases. The present study is to demonstrate the protective effect of Danshen extract against the homocysteine-induced adverse effect on human umbilical vein endothelial cell (HUVEC). Homocysteine (5 mM) not only decreased the cell viability but also caused the disruption of capillary-like structure formation in vitro. The protective effect of Danshen aqueous extract and its active compounds on endothelial cell function were demonstrated through an in vitro tube formation assay, which mimics the new blood vessel formation. To identify the active components in the aqueous extract of Danshen, the content was characterized by instrumental analysis using high performance liquid chromatography with diode array detector (DAD) and electrospray tandem mass spectrometry (ESI-MS/MS). Interestingly, Danshen extract and its pure compounds showed different effectiveness in protecting HUVEC against Hcy-induced injury according to the following descending order: Danshen aqueous extract, 3-(3,4-dihydroxy-phenyl)-2-hydroxy-propionic acid (Danshensu), protocatechuic acid, catechin and protocatechualdehyde. We believed that such findings might provide evidence in understanding the beneficial effects of Danshen on the cardiovascular system.  相似文献   
7.
Novel Danshensu derivatives (3–8) were designed and synthesized to improve bioactivity based on the strategy of ‘medicinal chemical hybridization’. Our previous studies indicated that these compounds exhibited noticeable cardioprotective activities. Here, we investigate whether these novel Danshensu derivatives exert neuroprotective activities. An in vitro study revealed that these compounds could increase cell viability and reduce LDH (lactate dehydrogenase) leakage. Moreover, Danshensu-cysteine derivative compounds 6 and 8 could significantly inhibit lipid peroxidation of cell membrane and regulate the expression of apoptosis-related protein (Bcl-2, Bax and caspase 3). An in vivo study demonstrated that treatment with compound 6 at 30 mg/kg markedly decreased the infarct volume of MCAO (middle cerebral artery occlusion) insulted rat brain. Furthermore, treatment with compound 6 showed the antioxidant capacity by increasing the activity of SOD (superoxide dismutase) and GPx (glutathione peroxidase) and decreasing the level of MDA (malondialdehyde) and the ROS (reactive oxygen species) production significantly. These results suggested that these novel conjugates exert significant neuroprotective effects as anti-ischaemia agents and those with high potential merit further investigation.  相似文献   
8.
《Phytomedicine》2014,21(6):906-911
Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice.  相似文献   
9.
目的:研究丹参素对RANKL诱导的破骨细胞分化的影响。方法:运用冲洗法从股骨、胫骨中获得小鼠骨髓源性单核巨噬细 胞用于体外RANKL 诱导的破骨细胞分化,同时,施加不同剂量的丹参素干预,经TRAP染色法在形态学上观察观,蛋白印迹法检 测蛋白水平的变化,实时定量PCR 检测mRNA 水平变化来研究丹参素对RANKL诱导的骨髓源单核巨噬细胞破骨分化的影响。 结果:①不同剂量丹参素干预组与对照组相比,TRAP 阳性破骨细胞数量得到了明显抑制(P<0.05)。②不同剂量丹参素干预组与 对照组相比,磷酸化Akt的上调量被明显的降低。磷酸化p38 MAPK,JNK和ERK 的变化则不明显。③不同剂量丹参素干预组与 对照组相比,c-fos,TRAP,CTSK 等参与破骨细胞分化的重要基因表达减少,NFATc1 变化不明显。结论:丹参素通过下调磷酸化 Akt水平的途径抑制了RANKL诱导的破骨细胞分化。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号