首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127852篇
  免费   9776篇
  国内免费   5391篇
  2023年   1953篇
  2022年   1912篇
  2021年   4055篇
  2020年   4171篇
  2019年   5237篇
  2018年   4711篇
  2017年   3511篇
  2016年   3497篇
  2015年   4361篇
  2014年   7815篇
  2013年   10043篇
  2012年   6032篇
  2011年   7939篇
  2010年   6052篇
  2009年   6774篇
  2008年   6909篇
  2007年   7062篇
  2006年   6291篇
  2005年   5510篇
  2004年   4944篇
  2003年   4113篇
  2002年   3691篇
  2001年   2473篇
  2000年   2051篇
  1999年   1976篇
  1998年   1779篇
  1997年   1455篇
  1996年   1361篇
  1995年   1387篇
  1994年   1290篇
  1993年   1102篇
  1992年   1026篇
  1991年   921篇
  1990年   733篇
  1989年   644篇
  1988年   573篇
  1987年   535篇
  1986年   479篇
  1985年   718篇
  1984年   960篇
  1983年   709篇
  1982年   799篇
  1981年   608篇
  1980年   572篇
  1979年   464篇
  1978年   389篇
  1977年   302篇
  1976年   258篇
  1975年   234篇
  1974年   220篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
4.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
5.
Adiponectin (APN) is known to promote the osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (h‐JBMMSCs). However, the underlying mechanism has not been fully elucidated. Previously, we showed that APN could promote h‐JBMMSC osteogenesis via APPL1‐p38 by up‐regulating osteogenesis‐related genes. Here, we aimed to determine whether APN could promote h‐JBMMSC chemotaxis through CXCL1/CXCL8. The CCK‐8, wound healing and transwell assays were used to evaluate the proliferation, migration and chemotaxis of h‐JBMMSCs with or without APN treatment. Chemotaxis‐related genes were screened using RNA‐seq, and the results were validated using real‐time PCR and ELISA. We also performed Western blot using the AMPK inhibitor, WZ4003, and the p38 MAPK inhibitor, SB203580, to identify the signalling pathway involved. We found that APN could promote h‐JBMMSC chemotaxis in the co‐culture transwell system. CXCL1 and CXCL8 were screened and confirmed as the up‐regulated target genes. The APN‐induced CXCL1/8 up‐regulation to promote chemotaxis could be blocked by CXCR2 inhibitor SB225002. Western blot revealed that the phosphorylation of AMPK and p38 MAPK increased in a time‐dependent manner with APN treatment. Additionally, WZ4003 and SB203580 could suppress the APN‐induced overexpression of CXCL1 and CXCL8. The results of the transwell chemotaxis assay also supported the above results. Our data suggest that APN can promote h‐JBMMSC chemotaxis by up‐regulating CXCL1 and CXCL8.  相似文献   
6.
The kidneys are exposed to hypoxic conditions during development. Hypoxia-inducible factor (HIF), an important mediator of the response to hypoxia, is believed to have an important role in development. However, the relationship between HIF and branching morphogenesis has not been elucidated clearly.  相似文献   
7.
8.
Cellulomonas fimi genomic DNA encoding xylanase activity has been cloned and expressed in Escherichia coli. As judged by DNA hybridization and restriction analysis, twelve xylanase-positive clones carried a minimum of four different xylanase (xyn) genes. The encoded enzymes were devoid of cellulase activity but three of the four bound to Avicel.  相似文献   
9.
Abstract A small cryptic plasmid, pRJF2, from Butyrivibrio fibrisolvens strain OB157 was isolated and sequenced. The plasmid is similar in organisation to the previously sequenced Butyrivibrio plasmid, pRJF1, with two open reading frames, ORF1 and ORF2, flanking a region tentatively identified as the replication origin, and a region of unknown function defined by terminal 79 bp invert repeats. The sequences of ORF1, ORF2, and the presumptive replication origin are highly conserved. The sequence between the 79 bp invert repeats is not, and is therefore presumed to be of lesser functional significance, although the 5' and 3' termini are still highly conserved. The functional importance for plasmid replication of these regions was tested by constructing potential shuttle vectors, each lacking one or more of the regions of interest. When the region between the invert repeats was deleted and replaced by the erythromycin resistance gene from pAM β1 together with pUC18, to produce the 7.9 kb chimaeric plasmid pYK4, the construct was successfully transformed into E. coli and B. fibrisolvens by electroporation, and was stably maintained in both hosts. Both ORF1 and ORF2 were required for successful transformation of B. fibrisolvens .  相似文献   
10.
The actin cortex is a thin layer of actin, myosin and actin-binding proteins that underlies the membrane of most animal cells. It is highly dynamic and can undergo remodelling on timescales of tens of seconds, thanks to protein turnover and myosin-mediated contractions. The cortex enables cells to resist external mechanical stresses, controls cell shape and allows cells to exert forces on their neighbours. Thus, its mechanical properties are the key to its physiological function. Here, we give an overview of how cortex composition, structure and dynamics control cortex mechanics and cell shape. We use mitosis as an example to illustrate how global and local regulation of cortex mechanics gives rise to a complex series of cell shape changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号