首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   187篇
  国内免费   41篇
  2024年   7篇
  2023年   36篇
  2022年   29篇
  2021年   41篇
  2020年   57篇
  2019年   72篇
  2018年   65篇
  2017年   72篇
  2016年   68篇
  2015年   64篇
  2014年   80篇
  2013年   91篇
  2012年   45篇
  2011年   69篇
  2010年   52篇
  2009年   61篇
  2008年   62篇
  2007年   64篇
  2006年   50篇
  2005年   53篇
  2004年   40篇
  2003年   39篇
  2002年   34篇
  2001年   27篇
  2000年   37篇
  1999年   23篇
  1998年   14篇
  1997年   25篇
  1996年   16篇
  1995年   16篇
  1994年   15篇
  1993年   21篇
  1992年   19篇
  1991年   16篇
  1990年   8篇
  1989年   14篇
  1988年   8篇
  1987年   11篇
  1986年   10篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   7篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1950年   1篇
排序方式: 共有1575条查询结果,搜索用时 31 毫秒
1.
The design and characteristics of inexpensive and simply constructed equal-energy response photosynthetic irradiance sensors is described for use particularly where several cells are required in comparative ecological studies either above or below water. The dimensions of the sensors can be changed proportionally to suit different applications or components. The response of the sensor to irradiance at varying angles corresponds very closely to that required by the cosine law. The sensor is comparatively insensitive to other environmental variables in field use and gave a stable output; the long term drift was proportional to electrical output but in continuous use, drift is regular and could reach -0.08 year-1 of the total. The spectral range and cosine response is discussed in comparison to other more expensive (x 5–10) commercially available, sensors and to local standards.  相似文献   
2.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   
3.
Fish finders have already been widely available in the fishing market for a number of years.However,the sizes of these fishfinders are too big and their prices are expensive to suit for the research of robotic fish or mini-submarine.The goal of thisresearch is to propose a low-cost fish detector and classifier which suits for underwater robot or submarine as a proximity sensor.With some pre-condition in hardware and algorithms,the experimental results show that the proposed design has good per-formance,with a detection rate of 100 % and a classification rate of 94 %.Both the existing type of fish and the group behaviorcan be revealed by statistical interpretations such as hovering passion and sparse swimming mode.  相似文献   
4.
Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe‐dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light‐grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome‐deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid‐to‐nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid‐encoded protein that depends on phytochromes and the functional state of chloroplasts.  相似文献   
5.
Eco-environmental vulnerability assessment is crucial for environmental and resource management. However, evaluation of eco-environmental vulnerability over large areas is a difficult and complex process because it is affected by many variables including hydro-meteorology, topography, land resources, and human activities. The Thua Thien – Hue Province and its largest river system, the Perfume River, are vital to the social-economic development of the north central coastal region of Vietnam, but there is no zoning system for environmental protection in this region. An assessment framework is proposed to evaluate the vulnerable eco-environment in association with 16 variables with 6 of them constructed from Landsat 8 satellite image products. The remaining variables were extracted from digital maps. Each variable was evaluated and spatially mapped with the aid of an analytical hierarchy process (AHP) and geographical information system (GIS). An eco-environmental vulnerability map is assorted into six vulnerability levels consisting of potential, slight, light, medium, heavy, and very heavy vulnerabilities, representing 14%, 27%, 17%, 26%, 13%, 3% of the study area, respectively. It is found that heavy and very heavy vulnerable areas appear mainly in the low and medium lands where social-economic activities have been developing rapidly. Tiny percentages of medium and heavy vulnerable levels occur in high land areas probably caused by agricultural practices in highlands, slash and burn cultivation and removal of natural forests with new plantation forests. Based on our results, three ecological zones requiring different development and protection solutions are proposed to restore local eco-environment toward sustainable development. The proposed integrated method of remote sensing (RS), GIS, and AHP to evaluate the eco-environmental vulnerability is useful for environmental protection and proper planning for land use and construction in the future.  相似文献   
6.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   
7.
Summary The mitochondrial outer membrane contains voltagegated channels called VDAC that are responsible for the flux of metabolic substrates and metal ions across this membrane. The addition of micromolar quantities of aluminum chloride to phospholipid membranes containing VDAC channels greatly inhibits the voltage dependence of the channels' permeability. The channels remain in their high conducting (open) state even at high membrane potentials. An analysis of the change in the voltage-dependence parameters revealed that the steepness of the voltage dependence decreased while the voltage needed to close half the channels increased. The energy difference between the open and closed states in the absence of an applied potential did not change. Therefore, the results are consistent with aluminum neutralizing the voltage sensor of the channel. pH shift experiments showed that positively charged aluminum species in solution were not involved. The active form was identified as being either (or both) the aluminum hydroxide or the tetrahydroxoaluminate form. Both of these could reasonably be expected to neutralize a positively charged voltage sensor. Aluminum had no detectable effect of either single-channel conductance or selectivity, indicating that the sensor is probably not located in the channel proper and is distinct from the selectivity filter.  相似文献   
8.
Summary The voltage clamp technique is a powerful method for studying the physiology of excitable membrane. This technique has made possible the determination of ionic responses generated by activation of either receptor-mediated or voltage-dependent processes. The development of the whole-cell, tight-seal voltage clamp method has allowed the analysis and examination of membrane physiology at the single cell level. The method allows the characterization of voltage-dependent ionic conductances both at the macroscopic (whole-cell) and at the microscopic (unitary conductance or single channel) level in cells less than 10 µm in diameter, a feat difficult to achieve with conventional fine-tipped micropipettes.In this paper, several methologies used for culturing neuronal and non-neuronal cells in the laboratory are described. A comparison between the two modes of voltage clamp using blunt-tipped patch-microelectrodes, the switching (discontinuous) and the non-switching (continuous) modes, of the Axoclamp-2A amplifier is made. Some results on membrane currents obtained from neuronal and non-neuronal cells using the single electrode whole-cell tight-seal voltage clamp is illustrated. The possible existence of two inactivating K+ currents, one dependent on Ca++ the other is not, is discussed.  相似文献   
9.
It is shown that an inhibited enzyme electrode, using cytochrome oxidase, will respond to H2S, HCN and azide ion. For all three inhibitors the kinetics of the inhibition and recovery processes have been analysed using the theoretical model presented previously (Albery et al., 1990a). Rearrangement of the differential equation describing inhibition and the development of the necessary software has enabled us to obtain values of the concentration of inhibitor in a matter of seconds after exposure of the sensor. The sensor will measure concentrations of H2S down to 1 ppm in the gas phase and concentrations of HCN and azide ion down to 0·4 μmol dm−3 in the solution  相似文献   
10.
Patch-clamp recordings from ventricular myocytes of neonatal rats identified ionic channels that open in response to membrane stretch caused by negative pressures (1 to 6 cm Hg) in the electrode. The stretch response, consisting of markedly increased channel opening frequency, was maintained, with some variability, during long (>40 seconds) stretch applications. The channels have a conductance averaging 120 pS in isotonic KCl, have a mean reversal potential 31 mV depolarized from resting membrane potential, and do not require external Ca++ for activation. The channels appear to be relatively non-selective for cations. Since they are gated by physiological levels of tension, stretch-activated channels may represent, a cellular control system wherein beat-to-beat tension and/or osmotic balance modulate a portion of membrane conductance.Abbreviations SACs stretch-activated channels - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号