首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltage-dependent, anion-selective mitochondrial channel, VDAC, undergoes two different conformational changes from the open to a closed state under positive and negative applied electric fields. Micromolar quantities of aluminum hydroxide and other metal trihydroxides have recently been shown to be able to inhibit this voltage-dependent closure (Dill et al. (1987) J. Membr. Biol. 99, 187-196; Zhang and Colombini (1989) Biochim. Biophys. Acta 991, 68-78). It was suggested that the inhibition results from the neutralization of the positively charged voltage sensors by the metal species. In the present study, the dynamics of the metal-binding site accompanying channel closure was investigated by adding In(OH)3 to only one side of the membrane and examining its effect on the channel's gating processes. Indium added to open channels inhibited channel closure only when the metal-containing side was on the lower potential side of the applied field. If indium was added only to the higher-potential side, the channels closed and tended to remain closed after the field was abolished. The addition of metal hydroxide after closing the channels with a negative potential on the metal side did not result in channel re-opening as would be expected for sensor neutralization. Inhibition occurred immediately, however, if the channels were first allowed to open briefly. The closed-state selectivity seemed to be very similar in the absence or presence of the metal, indicating that the metal-binding sites are not located within the pore of the channel in the closed conformation. The results are consistent with a voltage-dependent translocation across the membrane of each of two metal-binding sites on VDAC. This translocation is tightly coupled with channel opening and closing.  相似文献   

2.
The mitochondrial channel, VDAC, regulates metabolite flux across the outer membrane. The open conformation has a higher conductance and anionic selectivity, whereas closed states prefer cations and exclude metabolites. In this study five mutations were introduced into mouse VDAC2 to neutralize the voltage sensor. Inserted into planar membranes, mutant channels lack voltage gating, have a lower conductance, demonstrate cationic selectivity, and, surprisingly, are still permeable to ATP. The estimated ATP flux through the mutant is comparable to that for wild-type VDAC2. The outer membranes of mitochondria containing the mutant are permeable to NADH and ADP/ATP. Both experiments support the counterintuitive conclusion that converting a channel from an anionic to a cationic preference does not substantially influence the flux of negatively charged metabolites. This finding supports our previous proposal that ATP translocation through VDAC is facilitated by a set of specific interactions between ATP and the channel wall.  相似文献   

3.
Summary The major permeability pathways of the outer mitochondrial membrane are the voltage-gated channels called VDAC. It is known that the conductance of these channels decreases as the transmembrane voltage is increased in the positive or negative direction. These channels are known to display a preference for anions over cations of similar size and valence. It was proposed (Doring & Colombini, 1985b) that a set of positive charges lining the channel may be responsible for both voltage dependence and selectivity. A prediction of this proposal is that progressive replacement of the positive charges with negative charges should at first diminish, and then restore, voltage dependence. At the same time, the channel's preference for anions over cations should diminish then reverse. Succinic anhydride was used to perform these experiments as it replaces positively charged amino groups with negatively charged carboxyl groups. When channels, which had been inserted into phospholipid membranes, were treated with moderate amounts of the anhydride, they lost their voltage dependence and preference for anions. With further succinylation, voltage dependence was regenerated while the channels became cation selective. The voltage needed to close one-half of the channels increased in those treatments in which voltage dependence was diminished. As voltage dependence was restored, the voltage needed to close half of the channels decreased. The energy difference between the open and closed state in the absence of an applied field changed little with succinylation, indicating that the procedure did not cause large changes in VDAC's structure but specifically altered those charges responsible for voltage gating and selectivity.  相似文献   

4.
The channel-forming protein, VDAC, located in the mitochondrial outer membrane, is probably responsible for the high permeability of the outer membrane to small molecules. The ability to regulate this channelin vitro raises the possibility that VDAC may perform a regulatory rolein vivo. VDAC exists in multiple, quasi-degenerate conformations with different permeability properties. Therefore a modest input of energy can change VDAC's conformation. The ability to use a membrane potential to convert VDAC from a high (open) to a low (closed) conducting form indicates the presence of a sensor in the protein that allows it to respond to the electric field. Titration and modification experiments point to a polyvalent, positively charged sensor. Soluble, polyvalent anions such as dextran sulfate and Konig's polyanion seem to be able to interact with the sensor to induce channel closure. Thus there are multiple ways of applying a force on the sensor so as to induce a conformational change in VDAC. Perhaps cells use one or more of these methods.  相似文献   

5.
Yeast VDAC channels (isolated from the mitochondrial outer membrane) form large aqueous pores whose walls are believed to consist of 1 a helix and 12 strands. Each channel has two voltage-gating processes: one closes the channels at positive potentials, the other at negative. When VDAC is reconstituted into phospholipid (soybean) membranes, the two gating processes have virtually the same steepness of voltage dependence and the same midpoint voltage. Substituting lysine for glutamate at either end of one putative strand (E145K or E152K) made the channels behave asymmetrically, increasing the voltage dependence of one gating process but not the other. The asymmetry was the same whether 1 or 100 channels were in the membrane, indicating oriented channel insertion. However, the direction of insertion varied from membrane to membrane, indicating that the insertion of the first channel was random and subsequent insertions were directed by the previously inserted channel (s). This raises the prospect of an auto-directed insertion with possible implications to protein targeting in cells. Each of the mutations affected a different gating process because the double mutant increased voltage dependence of both processes. Thus this strand may slide through the membrane in one direction or the other depending on the gating process. We propose that the model of folding for VDAC be altered to move this strand into the sensor region of the protein where it may act as a tether and guide/restrict the motion of the sensor.This work was supported by grants from the Office of Naval Research (N00014-90-J-1024) and the National Institutes of Health (GM 35759). Present address: Department of Physiology, 6811 Med. Sciences Bldg 2, University of Michigan, Ann Arbor, MI 48109 Present address: Department of Physiology, K.U. Leuven Medical School, Gasthuijsberg, 3000 Leuven, Belgium  相似文献   

6.
We have analyzed voltage-dependent anion-selective channel (VDAC) gating on the assumption that the states occupied by the channel are determined mainly by their electrostatic energy. The voltage dependence of VDAC gating both in the presence and in the absence of a salt activity gradient was explained just by invoking electrostatic interactions. A model describing this energy in the main VDAC states has been developed. On the basis of the model, we have considered how external factors cause the redistribution of the channels among their conformational states. We propose that there is a difference in the electrostatic interaction between the voltage sensor and fixed charge within the channel when the former is located in the cis side of membrane as opposed to the trans. This could be the main cause of the shift in the probability curve. The theory describes satisfactorily the experimental data (Zizi et al., Biophys. J. 1998. 75:704-713) and explains some peculiarities of VDAC gating. The asymmetry of the probability curve was related to the apparent location of the VDAC voltage sensor in the open state. By analyzing published experimental data, we concluded that this apparent location is influenced by the diffusion potential. Also discussed is the possibility that VDAC gating at high voltage may be better described by assuming that the mobile charge consists of two parts that have to overcome different energetic barriers in the channel-closing process.  相似文献   

7.
VDAC channels exist in the mitochondrial outer membrane of all eukaryotic organisms. Of the different isoforms present in one organism, it seems that one of these is the canonical VDAC whose properties and 3D structure are highly conserved. The fundamental role of these channels is to control the flux of metabolites between the cytosol and mitochondrial spaces. Based on many functional studies, the fundamental structure of the pore wall consists of one α helix and 13 β strands tilted at a 46° angle. This results in a pore with an estimated internal diameter of 2.5nm. This structure has not yet been resolved. The published 3D structure consists of 19 β strands and is different from the functional structure that forms voltage-gated channels. The selectivity of the channel is exquisite, being able to select for ATP over molecules of the same size and charge. Voltage gating involves two separate gating processes. The mechanism involves the translocation of a positively charged portion of the wall of the channel to the membrane surface resulting in a reduction in pore diameter and volume and an inversion in ion selectivity. This mechanism is consistent with experiments probing changes in selectivity, voltage gating, kinetics and energetics. Other published mechanisms are in conflict with experimental results. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

8.
The availability of primary sequences for ion-conducting channels permits the development of testable models for mechanisms of voltage gating. Previous work on planar phospholipid bilayers and lipid vesicles indicates that voltage gating of colicin E1 channels involves translocation of peptide segments of the molecule into and across the membrane. Here we identify histidine residue 440 as a gating charge associated with this translocation. Using site-directed mutagenesis to convert the positively charged His440 to a neutral cysteine, we find that the voltage dependence for turn-off of channels formed by this mutant at position 440 is less steep than that for wild-type channels; the magnitude of the change in voltage dependence is consistent with residue 440 moving from the trans to the cis side of the membrane in association with channel closure. The effect of trans pH changes on the ion selectivity of channels formed by the carboxymethylated derivative of the cysteine 440 mutant independently establishes that in the open channel state, residue 440 lies on the trans side of the membrane. On the basis of these results, we propose that the voltage-gated opening of colicin E1 channels is accompanied by the insertion into the bilayer of a helical hairpin loop extending from residue 420 to residue 459, and that voltage-gated closing is associated with the extrusion of this loop from the interior of the bilayer back to the cis side.  相似文献   

9.
Voltage-activated complexation is the process by which a transmembrane potential drives complex formation between a membrane-embedded channel and a soluble or membrane-peripheral target protein. Metabolite and calcium flux across the mitochondrial outer membrane was shown to be regulated by voltage-activated complexation of the voltage-dependent anion channel (VDAC) and either dimeric tubulin or α-synuclein (αSyn). However, the roles played by VDAC's characteristic attributes—its anion selectivity and voltage gating behavior—have remained unclear. Here, we compare in vitro measurements of voltage-activated complexation of αSyn with three well-characterized β-barrel channels—VDAC, MspA, and α-hemolysin—that differ widely in their organism of origin, structure, geometry, charge density distribution, and voltage gating behavior. The voltage dependences of the complexation dynamics for the different channels are observed to differ quantitatively but have similar qualitative features. In each case, energy landscape modeling describes the complexation dynamics in a manner consistent with the known properties of the individual channels, while voltage gating does not appear to play a role. The reaction free energy landscapes thus calculated reveal a non-trivial dependence of the αSyn/channel complex stability on the surface density of αSyn.  相似文献   

10.
Transmembrane channels have been found in the membrane fraction of corn (Zea mays W64AN) mitochondria that exhibit a remarkable resemblance to the voltage dependent anion-selective channels (VDAC) located in the outer membrane of animal (Rattus norvegicus), protist (Paramecium aurelia), and fungal (Neurospora crassa) mitochondria. The channels in corn were demonstrated to be essentially identical to VDAC channels in three characteristic properties: (a) single channel conductance magnitude, (b) weak anion selectivity, and (c) nature of voltage dependence. These findings led us to conclude that the channels present in corn mitochondria are VDAC channels. This discovery may have repercussions concerning the regulation and function of higher plant mitochondria, and the causation of higher plant excitability.  相似文献   

11.
The effects of pH on the integral conductance and on the properties of single channels induced by porin from rat liver mitochondria in a lipid bilayer have been studied. When the membrane potential increases, the conductance of the multi-channel membrane decreases more sharply at acidic pH than at neutral or basic pH. The channel is shown to have several states with different conductance and selectivity. The number of levels and their conductance do not depend on pH, while the selectivity as well as the dependence of steady-state probabilities of different levels on the membrane potential are substantially affected by a pH change. This dependence curve steepens in the pH region where charges of carboxyl groups of aspartic and glutamic amino acids are neutralized. It is concluded that at neutral pH the channel gate is controlled by a great number of the positively and negatively charged groups. The high steepness of the conductance-voltage curve in the acidic region suggests that at least 60 positive charges participate in controlling the channel gate. This number, compared with that of the positively charged side chain amino acids per channel, according to the amino acid analysis of the porin, led us to conclude that almost all amino groups of the channel former must pass through the entire membrane potential difference upon random motion of the channel among the states. The assumption that channel closing leads to redistribution of the electric field within the pore, changing the energy of the charges on the voltage sensor, may be the only explanation of this phenomenon.  相似文献   

12.
A synthetic polyanion has been found to modulate the properties of the mitochondrial outer membrane channel, VDAC. This 10 kDa polyanion, first synthesized and described by Konig and co-workers, is a 1:2:3 copolymer of methacrylate, maleate, and styrene. It had been shown to interfere with the access of metabolites to the mitochondrial inner spaces. Here we show that, at nanomolar levels, the polyanion increases the voltage dependence of VDAC channels over 5-fold. Some channels seem to be totally blocked while others display the higher voltage dependence and are able to close at very low membrane potentials (5 mV). At 27 micrograms/ml polyanion, VDAC channels are closed while inserted into liposomes in the absence of any applied potential. The closed state of VDAC induced by the polyanion has similar properties to the closed state induced by elevated membrane potentials. The physical size of the polyanion-induced closed state (in VDAC-containing liposomes) is about 0.9 nm in radius. How this estimate fits with estimates of the channel's open state and estimated volume changes between the open and closed states, is discussed.  相似文献   

13.
The VDAC channel of the mitochondrial outer membrane is voltage-gated like the larger, more complex voltage-gated channels of the plasma membrane. However, VDAC is a low molecular weight (30 kDa), abundant protein, which is readily purified and reconstituted, making it an ideal system for analyzing the molecular basis for ion selectivity and voltage-gating. We have probed the VDAC channel by subjecting the cloned yeast (S. cerevisiae) VDAC gene to site-directed mutagenesis and introducing the resulting mutant channels into planar bilayers to detect the effects of specific sequence changes on channel properties. This approach has allowed us to formulate and test a model of the open state structure of the VDAC channel. Now we have applied the same approach to analyzing the structure of the channel's low-conducting "closed state" (essentially closed to important metabolites). We have identified protein domains forming the wall of the closed conformation and domains that seem to be removed from the wall of the pore during channel closure. The latter can explain the reduction in pore diameter and volume and the dramatically altered channel selectivity resulting from the channel closure. This process would make a natural coupling between motion of the sensor and channel gating.  相似文献   

14.
Role of charged residues in the S1-S4 voltage sensor of BK channels   总被引:1,自引:0,他引:1  
The activation of large conductance Ca(2+)-activated (BK) potassium channels is weakly voltage dependent compared to Shaker and other voltage-gated K(+) (K(V)) channels. Yet BK and K(V) channels share many conserved charged residues in transmembrane segments S1-S4. We mutated these residues individually in mSlo1 BK channels to determine their role in voltage gating, and characterized the voltage dependence of steady-state activation (P(o)) and I(K) kinetics (tau(I(K))) over an extended voltage range in 0-50 microM [Ca(2+)](i). mSlo1 contains several positively charged arginines in S4, but only one (R213) together with residues in S2 (D153, R167) and S3 (D186) are potentially voltage sensing based on the ability of charge-altering mutations to reduce the maximal voltage dependence of P(O). The voltage dependence of P(O) and tau(I(K)) at extreme negative potentials was also reduced, implying that the closed-open conformational change and voltage sensor activation share a common source of gating charge. Although the position of charged residues in the BK and K(V) channel sequence appears conserved, the distribution of voltage-sensing residues is not. Thus the weak voltage dependence of BK channel activation does not merely reflect a lack of charge but likely differences with respect to K(V) channels in the position and movement of charged residues within the electric field. Although mutation of most sites in S1-S4 did not reduce gating charge, they often altered the equilibrium constant for voltage sensor activation. In particular, neutralization of R207 or R210 in S4 stabilizes the activated state by 3-7 kcal mol(-1), indicating a strong contribution of non-voltage-sensing residues to channel function, consistent with their participation in state-dependent salt bridge interactions. Mutations in S4 and S3 (R210E, D186A, and E180A) also unexpectedly weakened the allosteric coupling of voltage sensor activation to channel opening. The implications of our findings for BK channel voltage gating and general mechanisms of voltage sensor activation are discussed.  相似文献   

15.
The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from electrostatics calculations carried out on the recently determined high-resolution structure of murine VDAC1 (mVDAC1). Poisson-Boltzmann calculations show that the ion transfer free energy through the channel is favorable for anions, suggesting that mVDAC1 represents the open state. This claim is buttressed by Poisson-Nernst-Planck calculations that predict a high single-channel conductance indicative of the open state and an anion selectivity of 1.75—nearly a twofold selectivity for anions over cations. These calculations were repeated on mutant channels and gave selectivity changes in accord with experimental observations. We were then able to engineer an in silico mutant channel with three point mutations that converted mVDAC1 into a channel with a preference for cations. Finally, we investigated two proposals for how the channel gates between the open and the closed state. Both models involve the movement of the N-terminal helix, but neither motion produced the observed voltage sensitivity, nor did either model result in a cation-selective channel, which is observed experimentally. Thus, we were able to rule out certain models for channel gating, but the true motion has yet to be determined.  相似文献   

16.
HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K+ channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K+ channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd2+ ions freeze the open–closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd2+ and measure the effect on voltage sensor movement. Cd2+ did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd2+-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open–closed equilibrium, corresponding to a coupling energy of ∼1.3–2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K+ channels, but also much weaker.  相似文献   

17.
KvLm, a novel bacterial depolarization-activated K(+) (Kv) channel isolated from the genome of Listeria monocytogenes, contains a voltage sensor module whose sequence deviates considerably from the consensus sequence of a Kv channel sensor in that only three out of eight conserved charged positions are present. Surprisingly, KvLm exhibits the steep dependence of the open channel probability on membrane potential that is characteristic of eukaryotic Kv channels whose sensor sequence approximates the consensus. Here we asked if the KvLm sensor shared a similar fold to that of Shaker, the archetypal eukaryotic Kv channel, by examining if interactions between conserved residues in Shaker known to mediate sensor biogenesis and function were conserved in KvLm. To this end, each of the five non-conserved residues in the KvLm sensor were mutated to their Shaker-like charged residues, and the impact of these mutations on the voltage dependence of activation was assayed by current recordings from excised membrane patches of Escherichia coli spheroplasts expressing the KvLm mutants. Conservation of pairwise interactions was investigated by comparison of the effect of single mutations to the impact of double mutations presumed to restore wild-type fold and voltage sensitivity. We observed significant functional coupling between sites known to interact in Shaker Kv channels, supporting the notion that the KvLm sensor largely retains the fold of its eukaryotic homologue.  相似文献   

18.
The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC.  相似文献   

19.
The positively charged S4 transmembrane segment of voltage-gated channels is thought to function as the voltage sensor by moving charge through the membrane electric field in response to depolarization. Here we studied S4 movements in the mammalian HCN pacemaker channels. Unlike most voltage-gated channel family members that are activated by depolarization, HCN channels are activated by hyperpolarization. We determined the reactivity of the charged sulfhydryl-modifying reagent, MTSET, with substituted cysteine (Cys) residues along the HCN1 S4 segment. Using an HCN1 channel engineered to be MTS resistant except for the chosen S4 Cys substitution, we determined the reactivity of 12 S4 residues to external or internal MTSET application in either the closed or open state of the channel. Cys substitutions in the NH2-terminal half of S4 only reacted with external MTSET; the rates of reactivity were rapid, regardless of whether the channel was open or closed. In contrast, Cys substitutions in the COOH-terminal half of S4 selectively reacted with internal MTSET when the channel was open. In the open state, the boundary between externally and internally accessible residues was remarkably narrow (approximately 3 residues). This suggests that S4 lies in a water-filled gating canal with a very narrow barrier between the external and internal solutions, similar to depolarization-gated channels. However, the pattern of reactivity is incompatible with either classical gating models, which postulate a large translational or rotational movement of S4 within a gating canal, or with a recent model in which S4 forms a peripheral voltage-sensing paddle (with S3b) that moves within the lipid bilayer (the KvAP model). Rather, we suggest that voltage sensing is due to a rearrangement in transmembrane segments surrounding S4, leading to a collapse of an internal gating canal upon channel closure that alters the shape of the membrane field around a relatively static S4 segment.  相似文献   

20.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号