首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20 h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently <5% from 0 to 30 N and <10% from 30 to 40 N. This novel method of calibrating FSRs for measuring compression force provides an inexpensive tool for biomedical and industrial design applications where measurements of finger and hand force are needed.  相似文献   

2.
The determination of blood coagulation time is an essential part of monitoring therapeutic anticoagulants. Standard methodologies for the measurement of blood clotting time require dedicated personnel and involve blood sampling procedures. A new method based on magnetoelastic sensors has been employed for the monitoring of blood coagulation. The ribbon-like magnetoelastic sensor oscillates at a fundamental frequency, which shifts linearly in response to applied mass loads or a fixed mass load of changing elasticity. The magnetoelastic sensors emit magnetic flux, which can be detected by a remotely located pick-up coil, so that no direct physical connections are required. During blood coagulation, the viscosity of blood changes due to the formation of a soft fibrin clot. In turn, this change in viscosity shifts the characteristic resonance frequency of the magnetoelastic sensor enabling real-time continuous monitoring of this biological event. By monitoring the signal output as a function of time, a distinct blood clotting profile can be seen. The relatively low cost of the magnetoelastic ribbons enables their use as disposable sensors. This, along with the reduced volume of blood required, make the magnetoelastic sensors well suited for at-home and point-of-care testing devices.  相似文献   

3.
The time response of affinity sensors made with nanostructured materials is a topic of considerable interest, since affinity sensors made with nanostructured materials provide greater sensitivities than corresponding planar crystalline devices but at the cost of stability and drift. We present a study of the time response of capacitive immunosensors made using porous silicon and ultrathin room temperature anodic oxide. It was found that sensor drift can be substantial but can be reduced by subjecting the capacitive immunosensor in buffer to an anodic bias that is larger than the bias at which sensor capacitance is measured. By measuring sensor response before the addition of the analyte and using it for baseline correction after addition of the analyte, the effect of nonspecific sensor drift can be further reduced. We observed that after the addition of the analyte to the porous silicon immunocapacitor, there is a fast decrease in capacitance (order of tens of seconds) followed by a slow increase (order of tens of minutes), which models well as a sum of exponents with a fast exponential decay followed by a slow exponential rise. Possible processes that can give rise to such a response are perturbations of the double layer for the fast decay and column resistance switching for the slow rise.  相似文献   

4.
Rapid and sensitive biosensor for Salmonella   总被引:2,自引:0,他引:2  
The rapid and sensitive detection of Salmonella typhymurium based on the use of a polyclonal antibody immobilized by the Langmuir-Blodgett method on the surface of a quartz crystal acoustic wave device was demonstrated. The binding of bacteria to the surface changed the crystal resonance parameters; these were quantified by the output voltage of the sensor instrumentation. The sensor had a lower detection limit of a few hundred cells/ml, and a response time of < 100 s over the range of 10(2)-10(10) cells/ml. The sensor response was linear between bacterial concentrations of 10(2)-10(7) cells/ml, with a sensitivity of 18 mV/decade. The binding of bacteria was specific with two binding sites needed to bind a single cell. The sensors preserve approximately 75% of their sensitivity over a period of 32 days.  相似文献   

5.
Two types of biosensors selective to formaldehyde have been developed on the basis of pH-sensitive field effect transistor as a transducer. Highly or partially purified alcohol oxidase (AOX) and the permeabilised cells of methylotrophic yeast Hansenula polymorpha (as a source of AOX) have been used as sensitive elements. The response time in steady-state measurement mode is in the range of 10-60 s for the enzyme-based sensors and 60-120 s for the cell-based sensor. When measured in kinetic mode the response time of all biosensors developed was less than 5 s. The linear dynamic range of the sensor output signals corresponds to 5-200 mM formaldehyde for highly and partially purified alcohol oxidase, and 5-50 mM formaldehyde for the cells. The operational stability of the biosensors is not less than 7 h, and the relative standard deviation of intra-sensor response is approximately 2 and 5% for the enzyme- and cell-based sensors, respectively. When stored at 4 degrees C, the enzyme and cell sensor responses have been found stable for more than 60 and 30 days, respectively. Both types of biosensors demonstrate a high selectivity to formaldehyde with no potentiometric response to primary alcohols, including methanol, or glycerol and glucose. The possible reasons of such unexpected high selectivity of AOX-based FET-sensors to formaldehyde are discussed. The influence of the biomembrane composition and the effect of different buffers on the sensor response to formaldehyde are also discussed.  相似文献   

6.
M. J. Dring  K. Lüning 《Planta》1975,125(1):25-32
Summary The crustose phase of Scytosiphon lomentaria (Lyngb.) J. Ag. persists indefinitely in 16 h of white light per day, but produces erect, cylindrical thalli vegetatively in 8-h days. The critical daylength for this short-day (SD) response is sharply defined, and, between 12 and 13 h, differences in daylength of only 15 min produce substantial differences in response. A significant response to SD can be induced by as few as 4 SD cycles, but 10–12 cycles are required to saturate the response and induce more than 90% of the plants to form thalli. The response to SD is completely inhibited by a 1-min light-break with a low irradiance of blue light, given in the middle of a 16-h dark period, but is unaffected by longer periods and higher irradiances of red or far-red light. There is good reciprocity between the irradiance and the length of a light-break with blue light, and 50% inhibition of the response to SD is induced by about 2 nE cm-2 at 449 nm. All attempts to reverse the inhibitory effects of blue light by subsequent irradiation with another wavelength have so far failed. These results indicate that phytochrome is not the photoreceptor pigment for this response, in spite of the similarity of the response in all other respects to the photoperiodic responses of flowering plants and other algae.Abbreviations and Symbols SD short day - LD long day. Horizontal above number of hours indicates dark period  相似文献   

7.
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.  相似文献   

8.

Objective

Finely resolved PM2.5 exposure measurements at the level of individual participants or over a targeted geographic area can be challenging due to the cost, size and weight of the monitoring equipment. We propose re-purposing the low-cost, portable and lightweight Shinyei PPD42NS particle counter as a particle counting device. Previous field deployment of this sensor suggests that it captures trends in ambient PM2.5 concentrations, but important characteristics of the sensor response have yet to be determined. Laboratory testing was undertaken in order to characterize performance.

Methods

The Shinyei sensors, in-line with a TSI Aerosol Particle Sizer (APS) model 3321, tracked particle decay within an aerosol exposure chamber. Test atmospheres were composed of monodisperse polystyrene spheres with diameters of 0.75, 1, 2 3 and 6 um as well as a polydisperse atmosphere of ASHRAE test dust #1.

Results

Two-minute block averages of the sensor response provide a measurement with low random error, within sensor, for particles in the 0.75–6μm range with a limit of detection of 1 μg/m3. The response slope of the sensors is idiomatic, and each sensor requires a unique response curve. A linear model captures the sensor response for concentrations below 50 μg/m3 and for concentrations above 50 μg/m3 a non-linear function captures the response and saturates at 800 μg/m3. The Limit of Detection (LOD) is 1 μg/m3. The response time is on the order of minutes, making it appropriate for tracking short-term changes in concentration.

Conclusions

When paired with prior evaluation, these sensors are appropriate for use as ambient particle counters for low and medium concentrations of respirable particles (< 100 ug/m3). Multiple sensors deployed over a spatial grid would provide valuable spatio-temporal variability in PM2.5 and could be used to validate exposure models. When paired with GPS tracking, these devices have the potential to provide time and space resolved exposure measurements for a large number of participants, thus increasing the power of a study.  相似文献   

9.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

10.
Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25% that was not negated by the underestimation observed after a light decrease. When leaves were exposed to sequential PPFD cycles (200-400 μmol m−2 s−1), carbon gain did not differ from leaves exposed to a single PPFD cycle of identical irradiance integral that had the same step size (200-400-200 μmol m−2 s−1) or mean irradiance (200-300-200 μmol m−2 s−1).  相似文献   

11.
Signal transduction by a traditional two-component system involves a sensor protein that recognizes a physiological signal, autophosphorylates and transfers its phosphate, and a response regulator protein that receives the phosphate, alters its affinity toward specific target proteins or DNA sequences and causes change in metabolic activity or gene expression. In some cases the sensor protein, when unphosphorylated, has a positive effect upon the rate of dephosphorylation of the regulator protein (bifunctional sensor), whereas in other cases it has no such effect (monofunctional sensor). In this work we identify structural and functional differences between these two designs. In the first part of the paper we use sequence data for two-component systems from several organisms and homology modelling techniques to determine structural features for response regulators and for sensors. Our results indicate that each type of reference sensor (bifunctional and monofunctional) has a distinctive structural feature, which we use to make predictions regarding the functionality of other sensors. In the second part of the paper we use mathematical models to analyse and compare the physiological function of systems that differ in the type of sensor and are otherwise equivalent. Our results show that a bifunctional sensor is better than a monofunctional sensor both at amplifying changes in the phosphorylation level of the regulator caused by signals from the sensor and at attenuating changes caused by signals from small phosphodonors. Cross-talk to or from other two-component systems is better suppressed if the transmitting sensor is monofunctional, which is the more appropriate design when such cross-talk represents pathological noise. Cross-talk to or from other two-component systems is better amplified if the transmitting sensor is bifunctional, which is the more appropriate design when such cross-talk represents a physiological signal. These results provide a functional rationale for the selection of each design that is consistent with available experimental evidence for several two-component systems.  相似文献   

12.
Thickness shear mode quartz-crystal resonator coated with plasma polymer films (PPFs) produced by radio-frequency sputtering of biomaterials and synthetic polymers were examined with respect to their abilities to continuously monitor indoor air. We confirmed the sensory capabilities of an array of PPF sensors to aromas emitted from essential oils at concentrations as low as the detection threshold of human olfaction. Changes in humidity induced a drift in the response curves of PPF sensors. On the contrary, volatile compounds exhibited pulse signals. The pulse signals of a D-phenylalanine sensor and a polyethylene sensor were synchronous, but the direction of the peaks was inverted in most cases. Compared with a photo-ionization detector sensor, the PPF sensors were able to detect subtle changes in the concentrations of volatile compounds in indoor air.  相似文献   

13.
Basic issues involved in effective use of a high photon irradiance for mass production of microalgae are elucidated: efficient utilisation of high irradiance requires cultures of high cell density grown in reactors with a narrow light path. The smaller the light-path, the higher the growth rate and the volume output rate (g L−1d−1) of cell mass. Areal productivity (g m−2d−1) may be inversely related to the length of light-path (e.g. Spirulina platensis) or directly related to it, as is the case with Nannochloropsis sp., in which the areal output rate increased with the increase in the light-path and the areal volume (L m−2). Inhibition of cell growth in Nannochloropsis became evident as cell concentration increased above a certain point. Response in cell growth to elevated irradiance was therefore possible only when the growth medium of ultrahigh cell density cultures was frequently changed. Inhibitory activity to culture growth may be directly involved in determining the optimal cell density (which results in the highest output of cell mass) and hence the optimal light-path. Under optimal growth conditions, cultures of high cell densities responded well to the rate of stirring, the relative beneficial effect of mixing increasing with the increase in cell density. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photo-polymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micrometer-sized polymer) sensor diameter (92.2+/-2.2 microm), height (35.0+/-1.0 microm), and roundness (0.00072+/-0.00023). pH sensors were evaluated in terms of pH sensing ability (< or =2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.  相似文献   

15.
Effects of total irradiance on growth and flowering were studied in cineraria cv. Cindy Blue grown under warm (mean 21°C) glasshouse conditions. Efficiency of light conversion for leaf and shoot dry weight increase were reduced from 0.08 to 0.02 as the mean daily light integral increased from 0.9 to 4.4 MJ m-2 day-1 but no significant difference in leaf area were associated with this. Specific leaf area decreased exponentially from 0.07 to 0.02 m2g1 over the cumulative irradiance range 23 to 127 MJ m-2 after the start of treatments and thereafter remained stable. A light integral of 19.2 MJ m-2 were required for initiation of one leaf in plants grown under a daily integral of 4.4 MJ m-2 day-1, as compared with only 5.1 MJ m-2day-1 required per leaf in plants grown at less than 0.9 MJ m-2day-1. Neither chronological duration of juvenile development nor leaf number below the flower was affected by irradiance. However, as the rate of leaf initiation increased with irradiance up to 2.4 MJ m-2day-1 so the rate of progress to flower visibility increased linearly with irradiance over the same range. This rate then remained constant from 2.4 to 4.4 MJ m-2day-1. Length of the main flowering shoot decreased and the number of flowering shoots increased as irradiance increased from 0.9 to 2.4 MJ m-2 day-1 and then remained unchanged by further increases in irradiance.  相似文献   

16.
OBJECTIVES: To evaluate the accuracy of intrapartum foetal pulse oximetry (SO(2POX)) using reusable sensors and the effect of a sensor performance test on data quality. Furthermore, to assess the sensor-related costs by using reusable sensors and sensor performance test. METHODS: 36 reusable sensors were used for SO(2POX) during labour of 289 term foetuses. A sensor performance test device assessing the emitter and receiver capability and the firmness of attachment of the sensors had been developed and used in the last 134 measurements before each resterilisation. Oxygen saturation (SaO(2)) at birth was measured spectrophotometrically after cord blood sampling. The accuracy of SO(2POX) was evaluated by analysing its relationship to SaO(2). The valid SO(2POX) data, as confirmed by subsequent sensor test in the second group, was considered comparable with those with single sensor use. Sensor-related average cost (sensors, test device and sterilisation) of such measurements was compared with that of single sensor use. RESULTS: Eight sensors failed performance test despite valid pulse oximetry signal output during their last measurements. There were significant overall linear correlations between SO(2POX) and SaO(2) (r=0.45, P<0.0001). Separate analyses of regression in the group without sensor performance testing showed an r(2) of 0.41, whereas in the group with subsequent sensor performance testing, the r(2) was 0.52 (P<0.05). By reusing the sensors, the sensor-related cost per valid measurement was $18.9 and 71% lower compared to single use of sensors ($65). CONCLUSIONS: Pulse oximetry may reflect fetal oxygen saturation. Data quality may be compromised by insufficient sensor performance, even though the reflection signal quality is acceptable. If sensor performance is tested before each measurement, reusable sensors may reduce the costs of fetal pulse oximetry.  相似文献   

17.
Heat conduction calorimeters are widely used in biological sciences, but baseline instability, low resolution, electrical noise and motion artifacts have limited their utility. Two main sources of noise, baseline fluctuation or drift and a motion artifact, were traced to amplifier drift, a small (0.015°C) gradient within the constant temperature cylinder, and the method of installing the thermopiles. The addition of heaters to the top and bottom of the cylinder reduced the gradient to approximately 0.003°C and greatly reduced the slow component of the motion artifact. The drift error was reduced by proper mounting of the amplifier and its external components and the enclosure of the calorimeter in a temperature-controlled box.An R-C model of the heat flow in the calorimeter was developed which was employed to discover several means of increasing sensitivity without increasing the rise-time of the calorimeter. Analysis, also based on the model, showed that variations in the air gap between the cell holder can be a major source of error when the calorimeter is used to investigate the kinetics of a chemical reaction. This analysis also showed that the time for the heat to flow through the solution through the solution in the cell can be the dominant factor in determining the rise-time of the instrument.The heat conduction calorimeter described here has improved characterics: a baseline stability of 200 nJ · s?1 (peak-to-peak) over a 48 h period; a resolution of 200 nJ · s?1; a sensitivity of 6.504 ± 0.045 J · V?1 · s?1 referred to the sensor output; and a rise-time of 122 s for the 10–90% response.  相似文献   

18.
The attenuation of down-welling quantum irradiance (400–700 nm) was monitored seasonally in three eutrophic Nebraska reservoirs from July, 1975, to June, 1976. Measurements were made at four stations in McConaughy, three in Pawnee, and three in Yankee Hill using a commercially available, quantum irradiance sensor. The mean vertical attenuation coefficient () for McConaughy varied within a range of thirty-four-fold (0.16 5.45 m-1), and this range is apparently the greatest reported and this range is apparently the greatest reported for a freshwater system in which data were collected with a quantum sensor. Annual average values for McConaughy, Yankee Hill, and Pawnee were 0.69 m–1, 1.08 m–1, and 1.25 m–1, respectively. The euphotic zone and the 1% level of subsurface irradiance is discussed with respect to the penetration of photosynthetically active radiation (PAR) into natural waters.This study was supported by a grant from the Office of Water Research and Technology, U.S. Dept. of the Interior, project number A-043-NEB, agreement number 14-34-0001-6028, to James R. Rosowski, School of Life Sciences, University of Nebraska, Lincoln.  相似文献   

19.
High irradiance during treatment of mung bean cuttings favours root formation in response to supplied auxin, whether the latter is IAA or IBA. On the other hand it is inhibitory towards root formation in the absence of supplied auxin. Light promotes the uptake of14C-IAA into cuttings and its upward movement into the leaves. When14C-IAA is applied to leaves of cuttings high irradiance favours movement of radioactivity into the epicotyl and hypocotyl. This movement is also enhanced by concomitant supply of IBA to the base of the cuttings. The irradiance under which stock plants are raised also affects the extent of root formation on cuttings. When cuttings are held in darkness without a supply of exogenous auxin they root best if prepared from seedlings raised under high irradiance. However, transport of14C-IAA out of leaves of cuttings is favoured when cuttings are prepared from seedlings grown under low irradiance. These observations are discussed in relation to auxin transport, photodestruction and, possibly, metabolism.  相似文献   

20.
Summary The CO2 and H2O gas exchange of young beech trees (Fagus sylvatica L.) were measured over a growing season. Of particular interest was the adaptation of gas exchange to the low level of photon flux density in the understorey of the old beech. The recorded diurnal courses were subdivided into several classes of irradiance. The most frequent class was from only 30–40 E * m-2 * s-1. Even at the highest irradiance values, no light saturation in assimilation occurred. The light compensation point lies below 3 E * m-2 * s-1, because net dark respiration values are very low. Calculated from the initial slope of the light response curves a mean value of 0.02 mol CO2 * mol photons-1 shows a very efficient use of light be the young trees. At the optimal phase of assimilation, the relationship between the daily sum of irradiance and net photosynthesis is highly significantly correlated. Under the local climatic situation, the stomatal opening primarily depends on irradiance. In response to a change in irradiance, stomatal opening also changes rapidly. Therefore, there is only a loose relationship between transpiration rate and vapour pressure saturation deficit. Towards autumn, the transpiration coefficient (E/A-ratio, estimated under light saturation) increases strongly because net photosynthesis decreases simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号