首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有36条查询结果,搜索用时 531 毫秒
1.
Homology among RAPD fragments in interspecific comparisons   总被引:14,自引:0,他引:14  
The use of RAPDs for comparative purposes relies on the assumption that similarity of fragment size is a dependable indicator of homology. To test the validity of this assumption, homology among 220 pairs of comigrating fragments from three wild sunflower species was determined. Ninety-one per cent cross-hybridized and/or displayed congruent restriction fragment profiles suggestive of homology. However, comparative linkage mapping data indicated that 13% of the homologous loci mapped to genomic locations that were incongruent with the majority of loci, suggestive of paralogous rather than orthologous relationships. Thus, of the 220 pairwise comparisons, only 174 (79.1%) identified loci that are useful for comparative genetic studies. These problems, as well as several other factors discussed in the text, will introduce noise into RAPD data sets and thereby reduce the probability of generating accurate estimates of genetic relationships. Recommended methods for reducing noise in RAPD data sets include increasing gel resolution and/or testing fragment homology. However, implementation of these approaches will not eliminate all uncertainties, and it is also recommended that RAPD data sets be tested for structure and reliability.  相似文献   
2.
直系同源(orthology)是指由于物种形成事件而享有共同祖先的基因之间的关系,直系同源基因之间通常具有相似的结构和生物学功能.由于基因组和转录组序列的快速积累,精确的识别直系同源基因有助于功能基因的注释,比较和进化基因组学研究.综述了现有的识别直系同源基因的主要方法,并列举了由此构建的数据库.这些方法可以归纳为三大类,第一类是基于序列相似性的方法,具有识别速度快以及灵敏度高等优点;第二类是基于构建系统发育树的方法,具有准确性高和信息量大等优点;第三类是将上述两种方法结合起来的混合方法,更好地平衡了灵敏性和准确性.最后总结了识别过程所面临的问题.  相似文献   
3.
Comparative mapping between model plant species for which the complete genome sequence is known and crop species has been suggested as a new strategy for the isolation of agronomically valuable genes. In this study, we tested whether comparative mapping between Arabidopsisand maize of a small region (754 kb) surrounding the DREB1A gene in Arabidopsis could lead to the identification of an orthologous region in maize containing the DREB1A homologue. The genomic sequence information available for Arabidopsis allowed for the selection of conserved, low-copy genes that were used for the identification of maize homologues in a large EST database. In total, 17 maize homologues were mapped. A second BLAST comparison of these genes to the recently completed Arabidopsis sequence revealed that 15 homologues are likely to be orthologous as the highest similarity score was obtained either with the original Arabidopsis gene or with a highly similar Arabidopsis gene localized on a duplication of the investigated region on chromosome 5. The map position of these genes showed a significant degree of orthology with the Arabidopsis region. Nevertheless, extensive duplications and rearrangements in the Arabidopsisand maize genomes as well as the evolutionary distance between Arabidopsis and maize make it unlikely that orthology and collinearity between these two species are sufficient to aid gene prediction and cloning in maize.  相似文献   
4.
5.
Possvm (Phylogenetic Ortholog Sorting with Species oVerlap and MCL [Markov clustering algorithm]) is a tool that automates the process of identifying clusters of orthologous genes from precomputed phylogenetic trees and classifying gene families. It identifies orthology relationships between genes using the species overlap algorithm to infer taxonomic information from the gene tree topology, and then uses the MCL to identify orthology clusters and provide annotated gene families. Our benchmarking shows that this approach, when provided with accurate phylogenies, is able to identify manually curated orthogroups with very high precision and recall. Overall, Possvm automates the routine process of gene tree inspection and annotation in a highly interpretable manner, and provides reusable outputs and phylogeny-aware gene annotations that can be used to inform comparative genomics and gene family evolution analyses.  相似文献   
6.
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology—evolutionary relatedness—is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit—from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.  相似文献   
7.
8.
The HUGO Gene Nomenclature Committee (HGNC) Comparison of Orthology Predictions (HCOP) search tool combines the human, mouse, rat and chicken orthology assertions made by PhIGs, HomoloGene, Ensembl, Inparanoid, Mouse Genome Informatics (MGI) and HGNC, enabling users to identify predicted ortholog pairs for a specified gene or genes. The HCOP resource provides a useful method to integrate, compare and access a variety of disparate sources of human orthology data. The HCOP search tool, data and documentation are available at http://www.gene.ucl.ac.uk/hcop.  相似文献   
9.
Aluminium (Al) is the main factor that limits crop production in acidic soils. There is evidence that antioxidant enzymes such as superoxide dismutase (SOD) play a key role against Al‐induced oxidative stress in several plant species. Rye is one of the most Al‐tolerant cereals and exudes both citrate and malate from the roots in response to Al. The role of SOD against Al‐induced oxidative stress has not been studied in rye. Al accumulation, lipid peroxidation, H2O2 production and cell death were significantly higher in sensitive than in tolerant rye cultivars. Also, we characterised two genes for rye SOD: ScCu/ZnSOD and ScMnSOD. These genes were located on the chromosome arms of 2RS and 3RL, respectively, and their corresponding hypothetical proteins were putatively classified as cytosolic and mitochondrial, respectively. The phylogenetic relationships indicate that the two rye genes are orthologous to the corresponding genes of other Poaceae species. In addition, we studied Al‐induced changes in the expression profiles of mRNAs from ScCu/ZnSOD and ScMnSOD in the roots and leaves of tolerant Petkus and sensitive Riodeva rye. These genes are mainly expressed in roots in both ryes, their repression being induced by Al. The tolerant cultivar has more of both mRNAs than the sensitive line, indicating that they are probably involved in Al tolerance.  相似文献   
10.
The avian oocyte is surrounded by a specialized extracellular glycoproteinaceous matrix, the perivitelline membrane, which is equivalent to the zona pellucida (ZP) in mammals and the chorion in teleosts. A number of related ZP genes encode the proteins that make up this matrix. These proteins play an important role in the sperm/egg interaction and may be involved in speciation. The human genome is known to contain ZP1, ZP2, ZP3, and ZPB genes, while a ZPAX gene has also been identified in Xenopus. The rapid evolution of these genes has confused the nomenclature and thus orthologous relationships across species. In order to clarify these homologies, we have identified ZP1, ZP2, ZPC, ZPB, and ZPAX genes in the chicken and mapped them to chromosomes 5, 14, 10, 6, and 3, respectively, establishing conserved synteny with human and mouse. The amino acid sequences of these genes were compared to the orthologous genes in human, mouse, and Xenopus, and have given us an insight into the evolution of these genes in a variety of different species. The presence of the ZPAX gene in the chicken has highlighted a pattern of probable gene loss by deletion in mouse and gene inactivation by deletion, and base substitution in human.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号