首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1361篇
  免费   169篇
  国内免费   342篇
  2023年   31篇
  2022年   33篇
  2021年   44篇
  2020年   56篇
  2019年   76篇
  2018年   69篇
  2017年   64篇
  2016年   58篇
  2015年   56篇
  2014年   60篇
  2013年   92篇
  2012年   75篇
  2011年   79篇
  2010年   76篇
  2009年   89篇
  2008年   82篇
  2007年   91篇
  2006年   88篇
  2005年   70篇
  2004年   55篇
  2003年   46篇
  2002年   47篇
  2001年   45篇
  2000年   49篇
  1999年   27篇
  1998年   38篇
  1997年   37篇
  1996年   31篇
  1995年   22篇
  1994年   18篇
  1993年   18篇
  1992年   22篇
  1991年   15篇
  1990年   17篇
  1989年   16篇
  1988年   11篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   9篇
  1983年   2篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1872条查询结果,搜索用时 187 毫秒
1.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   
2.
Allogibberic acid (I) has been identified as the compound responsible for the inhibition of flowering, increase in frond multiplication rate and decrease in frond size produced in Lemna perpusilla 6746 by autoclaved, unbuffered aqueous solutions of gibberellic acid (VII). 13-Deoxyallogibberic acid (IV), a product of autoclaving aq. GA7 (VIII) solutions, also inhibits flowering in L. perpusilla and is about 10 times more active than allogibberic acid.  相似文献   
3.
水分利用效率(WUE)是表征陆地碳-水循环耦合关系的重要指标,但其对气候变化响应的高程分异仍不清楚。通过集合经验模态分解(EEMD)去趋势和偏相关方法,以"21世纪海上丝绸之路"沿线省份为研究区,揭示WUE对气候变化的响应及其随高程的分异。研究结果表明:(1)研究区内WUE多年均值由中心向南北递减。不同植被类型的WUE多年均值由高到低依次为:常绿针叶林、混交林、常绿阔叶林、稀树灌木草地、耕地和城市建设用地。(2)51.11%的区域表现出均温与WUE的正相关;而81.46%地区表明温差的扩大会使得WUE增加;有近一半的研究区表明最高温的升高有利于提高WUE,而最低温的作用则相反;有67.99%的区域表明降水增多反而会导致WUE的减少。(3)在大多数土地覆盖类型,日温差和最低温主要与WUE呈正相关,而最高温和降水主要与WUE呈负相关。在常绿针叶林、耕地和城市建设用地,日均温与WUE呈负相关。在其他三种植被类型下则呈正相关。(4)在低海拔地区,均温与WUE呈负相关而在中高海拔地区则转变为正相关关系。而最高温则正好相反。降水与WUE的负相关关系系数随高度的增加而不断加强,而温差和最低温与WUE的正相关关系也随高度的增加而剧烈波动增强。  相似文献   
4.
Rice straw decomposition in rice-field soil   总被引:1,自引:0,他引:1  
Rice straw, buried in a rice-field during the dry season decomposed at a rate of 0.0075 day-1. Seventy five percent of the biomass, 70 percent carbon, 50 percent nitrogen and 30 percent phosphorus remained after 139 days of decomposition. Rice straw decomposition furnished 33% N and 8% P of the total nitrogen and phosphorus provided by man.  相似文献   
5.
Summary Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes.  相似文献   
6.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   
7.
Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.  相似文献   
8.
Sesbania sesban was evaluated as green manure crop for lowland rice in the Dry Zone of Sri Lanka. The legume was grown during a fallow period before lowland rice (Oryza sativa) and ploughed under just before transplanting. Weight loss and nitrogen content in litterbags containing leaves, stems and roots of the legume were monitored. Comparisons were made between rice yields from 20 m2 plots after green manuring in combination with different nitrogen fertilizer levels (0, 2.4, 4.8 and 7.2 gm−2) and nitrogen fertilizer (9.6 gm−2) alone. Above-ground biomass ofS. sesban was 440 gm−2 (dry wt) when ploughed under after 84 days growth. N-content in leaves, stems and roots was 3.76%, 0.41% and 0.73%, respectively. This gave a N-input fromS. sesban of 9.2 gm−2 (8.3 g from above-ground parts and 0.9 g from roots). The corresponding K and P inputs were 7.3 and 0.6 gm−2 respectively. The nitrogen rich leaves, which contained 88% of the nitrogen in the above-ground parts, decomposed and released its nitrogen much more rapidly than the stems and roots. After only four days the leaves had released 5.3 g Nm−2 and after 14 days they had released 6.4 g Nm−2. The highest rice yield (505 gm−2) was obtained usingS. sesban and 4.8 gm−2 of N-fertilizer. The yields with only N-fertilizer or onlyS. sesban were 442 gm−2 and 396 gm−2, respectively. Due to the rapid decomposition of the nitrogen rich leaves,S. sesban did not behave as a slow release fertilizer. Thus, it is not necessary to apply nitrogen fertilizers as a basal dose.  相似文献   
9.
Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida>A. rubrum>Q. prinus.Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs.These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K>Mg>mass>Ca>S>P>N.  相似文献   
10.
郭继勋  祝廷成 《生态学报》1992,12(4):295-301
分解速率和损失率从不同侧面反映了枯枝落叶分解动态,羊草草原主要优势植物,羊草(Leymus chinensis),拂子茅(Calamagrostis epigejos),减蓬(Suaeda glauca),碱茅(Puccinellia tenuiflora),五脉山黎豆(Lathyrus quinqueneruivs),碱蒿(Artemisia anethifolia)分解速率的季节变化动态近似倒“V”字型,损失率的季节变化呈S型,反了枯枝落叶的失重情况,枯枝落叶的化学组成成分是造成不同种植物间分解差异的主要原因,特别是C/N比与分解快慢有密切关系,分解初期,枯枝落叶的损失符合指数衰减模型,枯枝落叶损失95%所需时间,羊草群落约为8.8a,杂类草群落约为9.7a,碱茅群落约为7.1a,碱蓬群落约为4.7a。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号