首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Cuevas  E. Medina 《Oecologia》1986,68(3):466-472
Summary A comparative analysis on the rate of fine litterfall and its associated nutrient fluxes was carried out in a mixed forest on Tierra Firme, a tall Amazon Caatinga and a Bana on podsolized sands near San Carlos de Rio Negro. There was seasonality in leaf fall and total litterfall in mixed forest and tall Amazon Caatinga forest but no definite trend in the Bana. Litterfall curves were significantly correlated among sites indicating common regulating factors in the three forests. Leaf litter from mixed forest on Tierra Firme was richer in N with extremely low Ca and Mg concentrations; tall Amazon Caatinga litter had higher P and Mg concentration, while Bana litter was low in N but K concentration was twice as high as in the other two forests. Annual fine litterfall in Tierra Firme mixed forest was nearly 4 times higher than in Bana, But N flux was 10 times higher, while Ca and Mg fluxes were similar. Tall Amazon Caatinga had Ca and Mg fluxes in litterfall 2–3 times higher than the other two forests. Within-stand efficiency of nitrogen, calcium and magnesium use, as measured by biomass/nutrient ratios, differentiates Tierra Firme from Caatinga and Bana forest: Tierra Firme has the lowest N, but the highest Ca and Mg use efficiencies. Higher P use efficiency was measured in Bana followed by Tierra Firme and Caatinga; while Tierra Firme and Caatinga showed similar higher K use efficiencies than Bana. N/P ratios indicates that Tierra Firme forest is limited by P availability, while low N availability predominates in Caatinga. Bana appears limited by both N and P. These differences probably relate to variations in degree of sclerophylly and leaf duration which determine leaf nutrient concentrations in the ecosystems studied.  相似文献   

2.
Bana, or Low Amazon Caatinga is an evergreen sclerophyllous woodland. It occurs on bleached quartz sands in the lowlands of SW Venezuela, where it occupies relatively small ‘islands’ amidst Tall Amazon Caatinga which is exclusively developed on tropaquods. There is an outer vegetation belt about 20 m in width in which trees over 10 m in height occur (Tall Bana); its structure and floristic composition resemble Tall Amazon Caatinga. Low Bana (maximum tree height usually below 5 m) follows next. The central part is occupied by Open Bana in which even lower trees are very widely spaced. Destructive phytomass sampling was carried out for chemical analyses in seven plots along a 150 m line across the zonation. The total dry matter of living plants including roots of Tall Bana (30–32 kg/m2) compares rather well with 41 kg/m2 in Tall Amazon Caatinga. This is only 9–14 kg/m2 in Low Bana, and 4–6 kg/m2 in Open Bana. The average root % of total phytomass increases from 41% in Tall Bana to 63% in Low Bana, and is 88% in Open Bana. Average total dry dead above-ground phytomass (including standing trees and stumps) declines from 1 kg/m2 in Tall Bana to 0.2 kg/m2 in Open Bana. An accumulation of dead matter in Low and Open Bana, relative to the above-ground phytomass of living plants, is noted and this contrasts with the general absence of raw humus in the soil. Eighty-two species of woody plants (dbh≥1 cm) were recorded on the total plot area (640 m2); 90% of the species are also known to occur in Tall Amazon Caatinga. The species number declines from 59 in Tall Bana to 18 in Open Bana. Mesophylls sensu strictu dominate in Tall Bana, while notophylls are dominant in Low and Open Bana. Herbaceous species are less numerous: most of them belong to the Araceae, Bromeliaceae, Orchidaceae, Droseraceae, Eriocaulaceae and Xyridaceae.  相似文献   

3.
BACKGROUND AND AIMS: The importance of superficial root mats inside the forest floor for the nutrition of Amazonian rain forests has been extensively investigated. The present study was aimed at assessing the function of a root mat adherent to decomposing organic material observed in Eucalyptus plantations. METHODS: The development of the root mat was studied through micromorphological observations of thin litter sections, and the influence of soil microtopography and soil water repellency on root mat biomass was assessed in situ on an area of 5 m2. In addition, input-output budgets of nutrients within the forest floor were established from measurements of litterfall, dissolved nutrients in gravitational solutions, and forest floor nutrient contents. KEY FINDINGS: The amounts of nutrients released during litter decay in this ecosystem during the period of study were, on average, 46, 3, 4, 19 and 17 kg ha-1 year-1 for N, P, K, Ca and Mg, respectively. The simultaneous measurements of the chemical composition of throughfall solutions and leachates beneath the forest floor showed a very quick uptake of nutrients by the root mat during the decomposition processes. Indeed, the solutions did not become noticeably enriched in nutrients during their passage through the holorganic layer, despite large amounts of elements being released during litter decay. The root mat biomass decreased significantly during the dry season, and a preferential development in microdepressions at the soil surface was observed. A strong water repellency observed in these depressions might enhance the ability of the roots to take up water and nutrients during the dry periods. CONCLUSIONS: The root mat was active throughout the year to catch the flux of nutrients from the biodegradation of the forest floor, preventing the transfer of dissolved nutrients toward deeper soil horizons. This mechanism is involved in the successful adaptation of this Eucalyptus hybrid in areas covered by 'climacic' savannas in Congo.  相似文献   

4.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

5.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

6.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

7.
杨欢  尹春英  唐波  郑东辉  赵春章  李丹丹  刘庆 《生态学报》2018,38(14):5017-5026
比较了川西亚高山针叶林主要树种粗枝云杉(Picea asperata)和岷江冷杉(Abies faxoniana)样地各土层(0—5 cm、5—10cm、10—20 cm)土壤pH值差异,并从两树种养分吸收和养分归还相关累积H~+输入方面探究其差异原因。研究结果表明:云杉样地各土层土壤pH值均显著高于冷杉样地(P0.05);云杉样地地被物累积H~+输入显著低于冷杉样地(P0.05);云杉样地凋落物中P、Mg、N、C平均浓度显著低于冷杉(P0.05),而Ca、C/N、木质素/N、C/P显著高于冷杉样地(P0.05),两树种凋落物中木质素、K平均浓度无显著差异。云杉和冷杉凋落物化学特性主成分分析PC_1、PC_2方差贡献率分别为73.7%和15.6%,累积方差贡献率为89.4%,其中PC_1主要综合Ca、C/P、C/N、木质素/N、P、N、Mg的信息;PC_2主要综合木质素、K、C的信息。各土层土壤pH值均与地被物累积H~+输入显著负相关,与PC_1样本分数显著正相关。研究结论:云杉和冷杉样地土壤pH值存在显著树种差异,且云杉使土壤pH值变大,冷杉使土壤pH值变小,这主要与地被物形成以及凋落物化学特性有关,即与凋落物的量和凋落物分解速率、凋落物养分归还率密切相关。  相似文献   

8.
Soil and litter respiration and nutrient concentrations (N, P, Ca, Mg and K) were measured in two adjacent rainforests near Lake Eacham on the Atherton Tableland in north-east Queensland. One forest had soil formed on basalt and, in physiognomic-structural classification of Webb (1968, 1978), was structurally complex. The other had soil formed on metamorphic rock and was structurally simple. Respiration was measured by the alkali trap method on 16 monthly occasions in 1986 and 1987. Soil and litter nutrient concentrations were higher in the complex forest (with the exception of soil N). The relative differences were greater for soil than litter and more pronounced for P and Ca (and also soil Mg) than other nutrients. Litter polyphenol concentrations were lower in the complex forest. Rates of litter respiration in the complex forest were, on average, nearly twice those of the simple forest. Soil respiration rates were occasionally slightly lower in the complex forest during the wet season but did not differ between the forests during the dry season. Highest rates of respiration were measured during the wet season although high rates for litter occasionally occurred during the dry season. Cumulative CO2 release from the soil and overlying litter did not differ between forests and averaged 5134 ± 96 g CO2 m-2 per year (mean ± s.e.m.) (1400 g C m-2 per year). Litter respiration accounted for 14% of the annual release in the complex forest and 11% in the simple forest. The association between site nutrient status and forest physiognomic structure at Lake Eacham represents a more general pattern in rainforests of north-east Queensland. Further study is needed to ascertain whether the results from this study apply more generally in both primary and secondary rainforests.  相似文献   

9.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

10.
神农架常绿落叶阔叶混交林凋落物养分特征   总被引:4,自引:1,他引:3  
刘璐  赵常明  徐文婷  申国珍  谢宗强 《生态学报》2019,39(20):7611-7620
凋落物是联结陆地生态系统植物与土壤养分的重要媒介,了解凋落物养分特征有助于理解陆地生态系统物质循环的机理。该研究于2015年收集了神农架地区常绿落叶阔叶混交林的新鲜凋落物及现存凋落物,测定其不同器官中大量元素(C、N、P、K、Ca、Mg)的含量,据此分析其养分含量、养分归还量、养分储量及化学计量比的特征。结果发现:该常绿落叶阔叶混交林新鲜凋落物的C、K养分含量显著高于现存凋落物,N、P、Ca、Mg养分含量显著低于现存凋落物;其凋落物大量元素的养分归还量及养分储量大小顺序均为C Ca N Mg K P,分别为1569.84、52.44、34.82、6.24、5.24、1.30 kg hm~(-2) a~(-1)及1835.29、87.87、51.17、12.12、3.90、1.95 kg hm~(-2) a~(-1);其新鲜凋落物及现存凋落物的C∶N∶P分别为1307.33∶27.73∶1及976.48∶26.77∶1,新鲜凋落物的C∶N、C∶P显著高于现存凋落物,N∶P无显著区别。研究表明,新鲜凋落物与现存凋落物养分含量之间的差异与不同元素在分解过程中的可淋溶性及生物固持等因素有关。该地区常绿落叶阔叶混交林凋落物养分归还量及养分储量相对于亚热带阔叶林平均水平较低;且显著低于喀斯特地区同类型森林,主要与其凋落物产量、降水量及植被类型有关。该森林生态系统新鲜凋落叶与中国及全球范围内阔叶树种凋落叶相比C∶N较低,C∶P、N∶P较高,这可能是由于该地区N沉降及P限制现象较为严重所致。  相似文献   

11.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

12.
Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.  相似文献   

13.
Comparing two tree species, we tested the effects of root diameter (up to 30 mm) and soil depth (down to 1.2 m) on the concentrations of lignin, cellulose and nitrogen (N) in roots of approximately 50-year-old Douglas fir and European beech growing in a temperate forest in South-western Germany. Fine roots (diameter 0.5–2 mm) exhibited significantly higher lignin concentrations, but lower cellulose concentrations than medium or coarse roots (diameter >5 mm). The cellulose and lignin concentrations of the roots as well as their lignin:cellulose ratios did not differ significantly among soil depths. In the Douglas fir, there was a tendency of decreasing N concentrations and increasing lignin:N ratios with increasing soil depth. This trend was absent or less pronounced in the beech. Beech roots displayed significantly higher cellulose and N concentrations and lower lignin:cellulose and lignin:N ratios than roots of the Douglas fir. Generally, the lignin concentrations of the roots did not differ between the tree species. Cellulose and lignin concentrations exhibited a significantly negative correlation. As several studies have demonstrated that plant litter decomposition is governed by the lignin:cellulose and lignin:N ratios more than by the lignin concentration of the detritus, the fraction of individual tree species in the stand composition might affect the decomposability of roots in beech–Douglas fir forests, and might also have an influence on soil carbon sequestration.  相似文献   

14.
滇中常绿阔叶林及云南松林水文作用的初步研究   总被引:12,自引:1,他引:11       下载免费PDF全文
 本文研究了滇中地区山地常绿阔叶林及云南松林的林冠截留量,冠流和茎流量,地表水土流失量,林地枯枝落叶层持水量,土壤含水量以及雨水、冠流、茎流和地表迳流中营养元素(N、P、K、Ca和Mg)的含量,并分析比较了针、阔两类森林调节和涵养水分的作用和降水中林冠养分的淋溶、迁移特点,对了解滇中亚热带山地森林生态系统的功能和生产力的研究,对本区森林资源的保护,林业的合理经营,均有重要意义。  相似文献   

15.
Heterotrophic nitrogen fixation is a key ecosystem process in unpolluted, temperate old‐growth forests of southern South America as a source of new nitrogen to ecosystems. Decomposing leaf litter is an energy‐rich substrate that favours the occurrence of this energy demanding process. Following the niche ‘complementarity hypothesis’, we expected that decomposing leaf litter of a single tree species would support lower rates of non‐symbiotic N fixation than mixed species litter taken from the forest floor. To test this hypothesis we measured acetylene reduction activity in the decomposing monospecific litter of three evergreen tree species (litter C/N ratios, 50–79) in an old‐growth rain forest of Chiloé Island, southern Chile. Results showed a significant effect of species and month (anova , Tukey's test, P < 0.05) on decomposition and acetylene reduction rates (ARR), and a species effect on C/N ratios and initial % N of decomposing leaf litter. The lowest litter quality was that of Nothofagus nitida (C/N ratio = 78.7, lignin % = 59.27 ± 4.09), which resulted in higher rates of acetylene reduction activity (mean = 34.09 ± SE = 10.34 nmol h?1 g?1) and a higher decomposition rate (k = 0.47) than Podocarpus nubigena (C/N = 54.4, lignin % = 40.31 ± 6.86, Mean ARR = 4.11 ± 0.71 nmol h?1 g?1, k = 0.29), and Drimys winteri (C/N = 50.6, lignin % = 45.49 ± 6.28, ARR = 10.2 ± 4.01 nmol h?1 g?1, k = 0.29), and mixed species litter (C/N = 60.7, ARR = 8.89 ± 2.13 nmol h?1g?1). We interpret these results as follows: in N‐poor litter and high lignin content of leaves (e.g. N. nitida) free‐living N fixers would be at competitive advantage over non‐fixers, thereby becoming more active. Lower ARR in mixed litter can be a consequence of a lower litter C/N ratio compared with single species litter. We also found a strong coupling between in situ acetylene reduction and net N mineralization in surface soils, suggesting that as soon N is fixed by diazotroph bacteria it may be immediately incorporated into mineral soil by N mineralizers, thus reducing N immobilization.  相似文献   

16.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

17.
Based on litter mass and litterfall data, decomposition rates for leaveswere found to be fast (k = 3.3) and the turnover times short (3.6mo) on the low-nutrient sandy soils of Korup. Leaf litteroffour ectomycorrhizal tree species (Berlinia bracteosa, Didelotiaafricana, Microberlinia bisulcata and Tetraberliniabifoliolata) and of three non-ectomycorrhizal species(Cola verticillata, Oubanguia alata andStrephonema pseudocola) from Korup were left to decomposein 2-mm mesh bags on the forest floor in three plots ofeachof two forest types forest of low (LEM) and high (HEM) abundance ofectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal speciesdecayed at a significantly slower rate than that of thenon-ectomycorrhizal species, although the former were richer in P and Nconcentrations of the start. Disappearance rates of the litter layer showed asimilar trend. Ectomycorrhizal species immobilized less N, but mineralized moreP, than non-ectomycorrhizal species. Differences between species groupsin K, Mg and Ca mineralization were negligible. Effect of forest type was clearonly for Mg: mineralization of Mg was faster in the HEM than LEM plots, apattern repeated across all species. This difference was attributed to a muchmore prolific fine root mat in the HEM than LEM forest. The relatively fastrelease of P from the litter of the ectomycorrhizal species suggests that thematmust allow an efficient uptake to maintain P in the forest ecosystem.  相似文献   

18.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

19.
Leaf litter fall is an important nutrient flux in temperature deciduous forests which supplies a large part of the rapidly mineralisable nutrient fraction to the soil. This study investigates nutrient return with leaf litter fall in 36 old-growth forest stands of Fagus sylvatica across a broad gradient of soil fertility covering 9 mesozoic and kaenozoic parent material types (three limestones, two sandstones, two clay stones, one sand and one loess substrate). Study objectives were to analyse (i) the dependency of leaf litter nutrient concentrations on soil fertility, and (ii) the relationship between soil fertility and nutrient return with leaf litter at the stand level. Beech stands on the nine parent material types produced similar annual leaf litter masses irrespective of soil fertility or acidity. Leaf litter from the nine parent materials showed only minor variation with respect to N and K concentrations (factors of 1.5 and 1.4), moderate variation for Ca, Mg and P concentrations (factors of 2.2 to 2.9), and high variation for Al and Mn concentrations (factors of 6.7 and 10.5). Consequently, annual nutrient return with litter fall (leaf litter mass x litter nutrient concentration) was more similar among the parent materials for N (165–273 mmol m−2 yr1) −1 and K (16–30 mm m−2 yr−1) than for Ca, P, Mg, Mn and Al. A possible explanation is increased N deposition in recent time. According to a correlation analysis, return rates of N, P, K and Mg (but not Ca) were independent of the pool size of the respective nutrient in the soil. N return rate was neither influenced by the soil pools of Nt, plant- available P (Pa) or exchangeable Ca, K and Mg, nor by soil acidity or the exchangeable Al pool. P return, in contrast, showed a negative relation to soil fertility. We hypothesize that nutrient fluxes with leaf litter fall do not necessarily reduce the fitness of tree populations as has been postulated from a tree-centred view. Rather, we suggest that nutrient fluxes with litter fall can increase, instead of decrease, plant fitness by improving nutrient availability in the densely rooted topsoil which reduces the roots’ carbon and nutrient costs of nutrient acquisition.  相似文献   

20.
Ingrowth cores in the field were used to compare fine root characteristics of hinoki cypress (Chamaecyparis obtusa) among rooting substrate in the form of needle leaf litter, decomposing organic material, and mineral soil. Fine root growth, morphology, arbuscular mycorrhizal (AM) associations, and tissue C and N concentration were determined. The inorganic N leaching from each soil substrate was taken as a measure of N availability. Although there was no significant difference in total N leaching among substrates, more NH + 4 -N leached from the decomposing organic material than other substrates. Rapid fine root production was observed in the organic material, whereas root production in the litter substrate was suppressed. Annual net fine root productions in litter, organic material, and mineral soil were 51, 193, and 132 g m−2, respectively. In the leaf litter substrate, AM colonization was suppressed and specific root length was higher than in the other substrates, indicating severe nutrient limitation in the litter. These responses of hinoki cypress roots seemed to be a soil exploitation pattern whereby absorptive fine roots were arranged to maximize nutrient acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号