首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1377篇
  免费   121篇
  国内免费   44篇
  2023年   26篇
  2022年   30篇
  2021年   54篇
  2020年   55篇
  2019年   61篇
  2018年   54篇
  2017年   39篇
  2016年   52篇
  2015年   46篇
  2014年   57篇
  2013年   67篇
  2012年   60篇
  2011年   56篇
  2010年   41篇
  2009年   63篇
  2008年   59篇
  2007年   60篇
  2006年   57篇
  2005年   38篇
  2004年   39篇
  2003年   38篇
  2002年   55篇
  2001年   40篇
  2000年   39篇
  1999年   36篇
  1998年   35篇
  1997年   20篇
  1996年   21篇
  1995年   26篇
  1994年   18篇
  1993年   14篇
  1992年   18篇
  1991年   22篇
  1990年   12篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1986年   11篇
  1985年   11篇
  1984年   16篇
  1983年   2篇
  1982年   12篇
  1981年   7篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1542条查询结果,搜索用时 343 毫秒
1.
《Developmental cell》2022,57(8):995-1008.e5
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
2.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
3.
4.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
5.
6.
Numerous investigations have been carried out on the spectral distribution of the light of different species of fireflies. Here we record the emission spectrum of the Indian species of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera : Lampyridae : Luciolinae) on a color film. Green and red color-sectors, with an intense yellow one in between, appear in this spectrum. Intensity profile of this spectrum reveals a hitherto undetected strong narrow yellow line, which lies within the full-width-at-half maximum (FWHM) of the intensity profile. The spectrum recorded in a high-resolution spectrometer confirms the presence of this sharp intense line. This finding lends support to an earlier drawn analogy between the in vivo emission of the firefly and laser light.  相似文献   
7.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   
8.
Birds encounter climate at the scale of microclimates that can vary rapidly in time and space and so understanding potential vulnerability and adaptations to those microclimates requires fine‐scale measurements that accurately track thermal exposures. However, few options exist for recording the microclimates actually experienced by birds (realized microclimates). We constructed and tested a simple, low‐cost, temperature logger for recording the realized microclimates of ground‐nesting birds. We developed attachment protocols for band‐mounting Thermochron iButtons on Ring‐billed Gull (Larus delawarensis) chicks. We tested these mounted, temperature‐logging devices on 20 chicks weighing > 200 g (device weight was 4 g), attaching devices for 48 h and observing behavior before and after attachment and removal. Devices recorded temperature immediately surrounding the leg at 2‐min intervals. Recorded temperatures were strong predictors of observed thermoregulatory behaviors (panting and sitting), outperforming predictions based on air temperatures measured by basic, static approaches. Through comparison with matched controls (chicks with just a band), we detected no adverse physiological effects of devices, no effects on social or feeding behavior, and only a short‐term decrease in inactivity immediately after device attachment (likely due to increased preening). By attaching iButtons to the legs of birds, we quantified realized thermal exposure, integrating air temperature, modes of environmental heat transfer, and bird behavior at microclimatic scales. Although not yet validated for broader use, our approach (including possible miniaturization) should be suitable to measure thermal exposure of adults, not just chicks, allowing collection of data concerning thermal exposures during flight under field conditions. At ~ $25 USD per device, our approach facilitates experimental protocols with robust sample sizes, even for relatively modest budgets.  相似文献   
9.
Mitosis is the key event of the cell cycle during which the sister chromatids are segregated onto two daughter cells. It is well established that abrogation of the normal mitotic progression is a highly efficient concept for anti‐cancer treatment. In fact, various drugs that target microtubules and thus interfere with the function of the mitotic spindle are in clinical use for the treatment of various human malignancies for many years. However, since microtubule inhibitors not only target proliferating cells severe side effects limit their use. Therefore, the identification of novel mitotic drug targets other than microtubules have gained recently much attention. This review will summarize the latest developments on the identification and clinical evaluation of novel mitotic drug targets and will introduce novel concepts for chemotherapy that are based on recent progress in our understanding how mitotic progression is regulated and how anti‐mitotic drugs induce tumor cell death. J. Cell. Biochem. 111: 258–265, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
10.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号