首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a firefly is made to inhale ethyl acetate vapour, a constant glow appears after a few minutes from its abdominal lantern. This control experiment has been performed by a few workers to record the emission spectrum of the firefly. However, a time-resolved experiment performed by us on this continuous light emitted by the species Luciola praeusta Kiesenwetter 1874 (Coleoptera: Lampyridae: Luciolinae) reveals that it is composed of a continuous train of tiny pulses! The nature of the pulses suggests that an oscillatory chemical reaction continues in the microsecond time scale in the lantern of the anaesthetized firefly.  相似文献   

2.
We recorded the in vivo emission and time-resolved spectra of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera: Lampyridae: Luciolinae). The emission spectrum shows that the full width at half maximum (FWHM) value for this particular species is 55 nm, which is significantly narrower than the in vivo half-widths reported till now. The time-resolved spectrum reveals that a flash of about 100 ms duration is, in fact, composed of a number of microsecond pulses. This suggests that the speed of the enzyme-catalysed chemiluminescence reaction in the firefly for the emission of light is much faster than was previously believed. A version of this article has already appeared in an archive Nature Precedings; see  相似文献   

3.
Continuous light could be produced from the firefly by making it inhale vapours of ethyl acetate. Here we perform such a control experiment on the Indian species of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera : Lampyridae : Luciolinae), and analyse the light in the microsecond time scale. The amplitude of the continuous train of triangular pulses is apparently altered in accordance with the instantaneous values of a hypothetical signal, which exhibits pulse amplitude modulation (PAM). In addition to sampling in amplitude, this scheme apparently provides sampling in time, representing pulse width modulation (PWM). A Fourier transform spectrum of this waveform shows the ‘carrier’ frequency and the accompanying ‘side bands’.  相似文献   

4.
Behavioural action spectra of the threshold of the Photinus pyralis female response to light stimuli simulating the bioluminescent optical signal of the conspecific male firefly were determined in the laboratory. The action spectra (Fig. 1) were narrow and peaked in the yellow region of the spectrum. The females responded only to stimuli of wavelengths longer than 480 nm and not to stimuli in the blue (420-460 nm) part of the spectrum. The shape of the function corresponds with (a) the electroretinographic spectral sensitivity function in the long wavelength (520-660 nm) region of the spectrum, (b) the action spectrum of the female response (Fig. 1), (c) the species yellow bioluminescence emission spectrum and (d) the action spectrum of the intracellular response from single retinular cells (Fig. 2) of the compound eyes in the firefly. Such a correspondence suggests that the narrow yellow receptors of the female mediate the detection and processing of the optical signal of the conspecific male. Since the bioluminescent optical signal is processed exclusively by a single receptor class, signal detection is achromatic.  相似文献   

5.
Firefly luciferase genes have been isolated from approximately 20 species of Lampyrinae, Luciolinae, and Photurinae. These are mostly nocturnal luminescent species that use light signals for sexual communication. In this study, we isolated three cDNAs for firefly luciferase from Psilocladinae (Cyphonocerus ruficollis) and Ototretinae (Drilaster axillaris and Stenocladius azumai), which are diurnal non-luminescent or weakly luminescent species that may use pheromones for communication. The amino acid sequences deduced from the three cDNAs showed 81-89% identities to each other and 60-81% identities with known firefly luciferases. The three purified recombinant proteins showed luminescence and fatty acyl-CoA synthetic activities, as observed in other firefly luciferases. The emission maxima by the three firefly luciferases (λmax, 545-546 nm) were shorter than those by known luciferases from the nocturnal fireflies (λmax, 550-568 nm). These results suggest that the primary structures and enzymatic properties of luciferases are conserved in Lampyridae, but the luminescence colors were red-shifted in nocturnal species compared to diurnal species.  相似文献   

6.
The Spectral Distribution of Firefly Light. II   总被引:2,自引:0,他引:2  
The in vivo peak emission wavelengths of bioluminescence are reported for 15 species of American fireflies. A spectrophotometric study of the dorsal light organs of 155 specimens of the Jamaican firefly Pyrophorus plagiophthalamus showed three distinct color distributions with peak emission wavelengths at 550.1 ± 1.5 mµ, 556.8 ± 1.4 mµ, and 562.4 ± 1.0 mµ. Similar spectral measurements of 35 ventral light organs of the same insects gave peak emission wavelengths ranging from 547 through 594 mµ. This is a wider distribution than the total range of all 34 species of firefly studied to date. There was no obvious correlation between the colors of the ventral and dorsal light organs. It appears that P. plagiophthalamus is a special case in which the luciferase enzyme is not only different among members of the same species, but it may be different for the dorsal and ventral light organs in a single individual. A minimum of six different luciferase molecules for P. plagiophthalamus ventral light organs is proposed. The statistical precision in making these spectrophotometric measurements is discussed.  相似文献   

7.
Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin.  相似文献   

8.
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.  相似文献   

9.
ERGs were recorded from the dorsal sector of dark- and chromatic-adapted compound eyes in the dark-active firefly Photuris versicolor ♀ and ♂ at different wavelengths across the spectrum ranging from 320 nm to 700 nm over 4.5 log units of change in the stimulus intensity. ERG elicited by white light stimulus was an on-negative monophasic wave typical of scotopic eyes. ERGs elicited by chromatic stimuli differed in their waveform characteristics in the short (near-u.v. and violet) and long (green-yellow) wavelengths. The slope of the intensity-response curves at different stimulus wavelengths were similar for phasic response and differed for the plateau component of the ERG. The spectral sensitivity curves obtained under dark- and chromatic-adapted conditions revealed peaks in the near-u.v. (λmax, 380 nm) and in the green (λmax 550 nm), suggesting the presence of at least two receptor types in the dorsal sector of the compound eyes of P. versicolor. The green (550 nm) peak corresponds with the species bioluminescence emission peak (552 nm).  相似文献   

10.
Fluorescence emission spectra excited at 514 and 633 nm were measured at ?196 °C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at ?196 °C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at ?196 °C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at ?196 °C.  相似文献   

11.
Sexual communication between male and female fireflies involves the visual detection of species-specific bioluminescent signals. Firefly species vary spectrally in both their emitted light and in the sensitivity of the eye, depending on the time when each is active. Tuning of spectral sensitivity in three firefly species that occupy different photic niches was investigated using light and electron microscopy, microspectrophotometry, and intracellular recording to characterize the location and spectral absorption of the screening pigments that filter incoming light, the visual pigments that receive this filtered light, and the visual spectral sensitivity. Twilight-active species had similar pink screening pigments, but the visual pigment of Photinus pyralis peaked near 545 nm, while that of P. scintillans had a λmax near 557 nm. The night-active Photuris versicolor had a yellow screening pigment that was uniquely localized, while its visual pigment was similar to that of P. pyralis. These results show that both screening and visual pigments vary among species. Modeling of spectral tuning indicates that the combination of screening and visual pigments found in the retina of each species provides the best possible match of sensitivity to bioluminescent emission. This combination also produced model sensitivity spectra that closely resemble sensitivities measured either with electroretinographic or intracellular techniques. Vision in both species of Photinus appears to be evolutionarily tuned for maximum discrimination of conspecific signals from spectrally broader backgrounds. Ph. versicolor, on the other hand, appears to have a visual system that offers a compromise between maximum sensitivity to, and maximum discrimination of, their signals. Accepted: 29 September 1999  相似文献   

12.
Firefly bioluminescence reaction in the presence of Mg2 +, ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350–359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7 Å and 2.2 Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351–359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.  相似文献   

13.
Subfemtomole quantities of ATP were determined using luminescence analysis with firefly extracts. The methodological advances include development of microtechniques for sample handling, and recording of the time profile of the light emission by photon counting in connection with multichannel techniques. The amount of ATP in isolated single cells of the microorganisms Paramecium, Peridinium, and of macrophages from the abdominal cavity of mice were assayed. These cells represented a range from 0.07 to 2.5 ng dry mass as assessed with automatic interferometric scanning.  相似文献   

14.

Background

Human African trypanosomiasis is caused by infection with parasites of the Trypanosoma brucei species complex, and threatens over 70 million people in sub-Saharan Africa. Development of new drugs is hampered by the limitations of current rodent models, particularly for stage II infections, which occur once parasites have accessed the CNS. Bioluminescence imaging of pathogens expressing firefly luciferase (emission maximum 562 nm) has been adopted in a number of in vivo models of disease to monitor dissemination, drug-treatment and the role of immune responses. However, lack of sensitivity in detecting deep tissue bioluminescence at wavelengths below 600 nm has restricted the wide-spread use of in vivo imaging to investigate infections with T. brucei and other trypanosomatids.

Methodology/Principal findings

Here, we report a system that allows the detection of fewer than 100 bioluminescent T. brucei parasites in a murine model. As a reporter, we used a codon-optimised red-shifted Photinus pyralis luciferase (PpyRE9H) with a peak emission of 617 nm. Maximal expression was obtained following targeted integration of the gene, flanked by an upstream 5′-variant surface glycoprotein untranslated region (UTR) and a downstream 3′-tubulin UTR, into a T. brucei ribosomal DNA locus. Expression was stable in the absence of selective drug for at least 3 months and was not associated with detectable phenotypic changes. Parasite dissemination and drug efficacy could be monitored in real time, and brain infections were readily detectable. The level of sensitivity in vivo was significantly greater than achievable with a yellow firefly luciferase reporter.

Conclusions/Significance

The optimised bioluminescent reporter line described here will significantly enhance the application of in vivo imaging to study stage II African trypanosomiasis in murine models. The greatly increased sensitivity provides a new framework for investigating host-parasite relationships, particularly in the context of CNS infections. It should be ideally suited to drug evaluation programmes.  相似文献   

15.
A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu2+ complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu2+. In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the MI = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric Ax and Ay hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g part of the spectrum is sensitive to the rhombic distortion parameters Ax and Ay. Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains ∼1 mL of frozen sample.  相似文献   

16.
Boletus roseoflavus is described as a new species based on morphological and molecular studies of the type collection and additional materials. Boletus roseoflavus is morphologically distinct from other related species (B. regius, B. appendiculatus, and B. speciosus) by its light pink, pink, or rosy pileus, lemon yellow or golden yellow context, and lemon yellow or light yellow, enlarged download stipe with yellow reticulation. Phylogenetic analyses based on ribosomal DNA internal transcribed spacer regions and nuclear large subunit ribosomal RNA indicate that B. roseoflavus belongs to Boletus section Appendiculati.  相似文献   

17.
18.
Green photosynthetic bacteria exhibit variations in the intensity of their fluorescence during illumination. The initial intensity of fluorescence, measured at the onset of illumination, has a spectrum in which the major pigment Chlorobium chlorophyll predominates. The minor pigment bacteriochlorophyll predominates in the spectrum of the time-varying part of the fluorescence. The spectrum of delayed light emission is identical to that of the time-varying fluorescence. The variations in fluorescence also resemble the delayed light in their kinetics and in their dependence on exciting light intensity. Similar results are obtained for the kinetics of prompt and delayed light emission in the algae Chlorella and Anacystis. These findings raise the possibility that the variations in fluorescence actually represent a fast component of delayed light emission, of intensity comparable to the intensity of fluorescence. In Anacystis there is an outburst of light emission that develops after the exciting light has been turned off, reaching a maximum intensity after 1 to 3 seconds. This emitted light has the spectrum of chlorophyll fluorescence. It appears to be a novel example of bioluminescence with singlet excited chlorophyll as the emitter.  相似文献   

19.
The occurrence of apiose in Lemna (duckweed) and other angiosperms   总被引:2,自引:1,他引:1       下载免费PDF全文
1. The branched-chain pentose apiose reacts with the benzidine–trichloroacetic acid reagent on paper chromatograms to give a yellow spot with·an intense white fluorescence in ultraviolet light; on chromatograms developed with butanol–acetic acid–water this spot lies between fucose and rhamnose. 2. Examination of paper chromatograms of hydrolysates of whole plant material has shown the presence of a substance with these properties in a wide variety of species. 3. Among the plants examined two members of the Lemnaceae (Lemna minor and Wolffia arrhiza) were found to be especially rich sources, comparable with Posidonia australis (Bell, Hardwick, Isherwood & Cahn, 1954). 4. Measurements of the apiose content of fractions derived from Lemna have shown that the sugar is present at a concentration of about 4% in the holocellulose, and part of this is retained in the α-cellulose left by extraction with 24% (w/v) potassium hydroxide containing borate.  相似文献   

20.
The vacuoles of lower epidermal strips from Vicia faba exhibit an intrinsic green fluorescence when incubated in alkaline buffers. Using an alkaline-induced absorbance change as a spectrophotometric assay, the major pigment responsible for this fluorescence was isolated and identified as the flavonoid: kaempferol 3-O-galactoside, 7-O-rhamnoside. The aqueous absorption maxima were 394 and 341 nanometers at pH 10.0 and 6.0, respectively, with a pKa of 8.3 and the fluorescence emission maximum was 494 nanometers at pH 10.0. The in vivo concentration was estimated to be between 3 and 10 micromolar. The absorption spectrum of this flavonoid is different from the action spectrum for stomatal opening indicating that this compound is not the photoreceptor pigment for the blue light response of Vicia faba guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号