首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.  相似文献   

2.
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. ‘Direct inhibitors’ of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.  相似文献   

3.
Hexavalent chromium, toxic heavy metal, among the top-rated environmental contaminants, is declared a potent endocrine disruptor in humans and animals. The present study was planned to find harmful effects on the reproductive system caused by Cr (VI) and the ameliorative effect of Nigella sativa and Nigella sativa-mediated AgNP on male mice (Mus musculus). In the present study, known infertility medicine, clomiphene citrate is also used as a positive control. The main objective of the present study was to assess the ameliorative potential of oral administration of a dose of 50 mg/kg BW clomiphene citrate (control), AgNP via chemical synthesis, Nigella sativa seed extract, and Nigella sativa-mediated AgNP against the Cr (VI) at the dose of 1.5 mg/kg BW from K2Cr2O7 orally induced toxicity over eight weeks on the reproductive performance of male albino mice. Nigella sativa mediated AgNPs were characterized by UV, SEM, FTIR, and XRD. The histological analysis, smear study, antioxidant capacity test, and hormone analysis were conducted by blood samples of albino mice. Cr exposed groups showed a significant decrease in sperm head breadth (5.29 ± 0.54 µ) and length (19.54 ± 1.18 µ), middle piece length, tail length, LH (1.65 ± 0.15 ng/mL), testosterone (2.63 ± 0.29 ng/mL), SOD (61.40 ± 2.48 mmol/mL), CAT (87.40 ± 6.01 mmol/mL), GSH (1.54 ± 0.09 µmol/mL), and no of spermatogonia (1.22 ± 0.25), and spermatocytes (2.33 ± 0.943). However, FSH level (160.00 ± 4.98 ng/mL), seminiferous tubule CSA (1094.69 ± 49.76 mm2), size of spermatogonia (41.30 ± 1.24 µ), and spermatocytes (26.07 ± 1.34 µ) were significantly increased. Administration of Nigella sativa and Nigella sativa-mediated AgNPs reduced the toxicity.  相似文献   

4.
The apelinergic system comprises the apelin receptor and its cognate apelin and elabela peptide ligands of various lengths. This system has become an increasingly attractive target for pulmonary and cardiometabolic diseases. Small molecule regulators of this receptor with good drug-like properties are needed. Recently, we discovered a novel pyrazole based small molecule agonist 8 of the apelin receptor (EC50 = 21.5 µM, Ki = 5.2 µM) through focused screening which was further optimized to initial lead 9 (EC50 = 0.800 µM, Ki = 1.3 µM). In our efforts to synthesize more potent agonists and to explore the structural features important for apelin receptor agonism, we carried out structural modifications at N1 of the pyrazole core as well as the amino acid side-chain of 9. Systematic modifications at these two positions provided potent small molecule agonists exhibiting EC50 values of <100 nM. Recruitment of β-arrestin as a measure of desensitization potential of select compounds was also investigated. Functional selectivity was a feature of several compounds with a bias towards calcium mobilization over β-arrestin recruitment. These compounds may be suitable as tools for in vivo studies of apelin receptor function.  相似文献   

5.
Xanthones C-glycosides are plants secondary metabolites with diverse biological activities. Among the C-glycoside xanthones, the mangiferin (MF) is of widespread occurrence in plants while isomangiferin (IsoMF) is not very common. For the present study mangiferin (MF) and isomangiferin (IsoMF) were isolated from Dryopteris ramosa. The antibacterial potential of MF and IsoMF was evaluated by using agar well diffusion method while cytotoxic properties of MF and IsoMF were assessed by brine shrimp lethality test (BSLT). The antibacterial potential of MF and IsoMF increases in dose dependent manner. The minimum inhibitory concentration (MIC) indicated strong antibacterial potential of MF against Salmonella setubal (125 µg/mL) and Bacillus subtilis (125 µg/mL) while MF showed weak antibacterial potential against Escherichia coli (500 µg/mL). On the other hand the IsoMF showed better antibacterial potential against all the tested strain including Escherichia coli (MIC = 250 µg/mL). The MF and IsoMF showed poor cytotoxicity towards Brine shrimp nauplii as indicated by their LD50 (969.77 ± 0.67 and 768.92 ± 0.81 µg/mL respectively). The present study has highlighted the antibacterial potential of MF and IsoMF. Further evaluation of these two isomeric compounds may prove to be the future remedies for various bacterial infections and other human ailments.  相似文献   

6.
IntroductionPiper crocatum Ruiz & Pav (P. crocatum) has been reported to accelerate the diabetic wound healing process empirically. Some studies showed the benefits of P. crocatum in treating various diseases but its mechanisms in diabetic wound healing have never been reported. In the present study we investigated the diabetic wound healing activity of the active fraction of P. crocatum on wounded hyperglycemia fibroblasts (wHFs).MethodsBioassay-guided fractionation was performed to get the most active fraction. The selected active fraction was applied to wHFs within 72 h incubation. Mimicking a diabetic condition was done using basal glucose media containing an additional 17 mMol/L D-glucose. A wound was simulated via the scratch assay. The collagen deposition was measured using Picro-Sirius Red and wound closure was measured using scratch wound assay. Underlying mechanisms through p53, αSMA, SOD1 and E-cadherin were measured using western blotting.ResultsWe reported that FIV is the most active fraction of P. crocatum. We confirmed that FIV\(7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml, 62.5 µg/ml, and 125 µg/ml) induced the collagen deposition and wound closure of wHFs. Furthermore, FIV treatment (7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml) down-regulated the protein expression level of p53 and up-regulated the protein expression levels of αSMA, E-cadherin, and SOD1.Discussion/conclusionsOur findings suggest that ameliorating collagen deposition and wound closure through protein regulation of p53, αSMA, E-cadherin, and SOD1 are some of the mechanisms by which FIV of P. crocatum is involved in diabetic wound healing therapy.  相似文献   

7.
8.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

9.
Aim of the study5-Fluorouracil (5-FU) can’t be given orally because of very low bioavailability and produces serious adverse effects. Therefore, the main objective of this research is to develop, evaluate, and comparative effects by different nanoformulations of topical application on chemoprevention of skin cancer in different types of skin.Material and methodsCastor oil (oil), Transcutol HP (surfactant), and Polyethylene glycol (PEG)–400 (co-surfactant) have taken on the basis of nonionic property and highest nanoemulsion (NE)-region. Aqueous micro titration method with ultra-sonication method (based on high energy) was used for the preparation of 5-FU-NE. Optimized-5-FU-NE was stable thermodynamically, and their characterizations was performed on the basis of globule size, zeta potential, refractive index, and viscosity. Optimized-NE has been converted into 5-FU-NE-Gel with the help of Carbopol® 934 and also performed their permeation studies in the different skins (cow, goat, and rat, ex vivo) using Logan transdermal diffusion cell (DHC-6T). Optimized-5-FU-NE and 5-FU-NE-Gel were evaluated cytotoxic studies (in vitro) on the melanoma cell lines.ResultsThe permeation of 5-FU from 5-FU-NE-Gel nanoformulation for rat skin model was 1.56 times higher than the 5-FU-NE and 12.51 times higher than the 5-FU-S for the cow and goat skin model. The values of steady state flux and permeability coefficient for 5-FU-NE-Gel of rat skin were higher i.e. 12.0244 ± 1.12 µgcm−2h−1 and 1.2024 ± 0.073 × 10−2 µg cm−2h−1, respectively. Optimized-5-FU-NE and 5-FU-NE-Gel nanoformulation were found to be physically stable. SK-MEL-5 cancer cells have showed the results based on cytotoxicity studies (in vitro) that 5-FU as Optimized-5-FU-NE-Gel is much more efficacious than 5-FU-NE followed by free 5-FU. Localization of 5-FU from 5-FU-NE-Gel was higher with higher permeation in rat skin.Conclusion5-FU-NE-Gel is found to be for the better to treatment of cutaneous malignancies. It can be developed 5-FU-NE-Gel could be a promising vehicle for the skin cancer chemoprevention.  相似文献   

10.
Proguanil, a member of biguanide family, has excellent anti-proliferative activities. Fluorine-containing compounds have been demonstrated to have super biological activities including enhanced binding interactions, metabolic stability, and reduced toxicity. In this study, based on the intermediate derivatization methods, we synthesized 13 new fluorine-containing proguanil derivatives, and found that 7a,7d and 8e had much lower IC50 than proguanil in 5 human cancerous cell lines. The results of clonogenic and scratch wound healing assays revealed that the inhibitory effects of derivatives 7a,7d and 8e on proliferation and migration of human cancer cell lines were much better than proguanil as well. Mechanistic study based on representative derivative 7a indicated that this compound up-regulates AMPK signal pathway and downregulates mTOR/4EBP1/p70S6K. In conclusion, these new fluorine-containing derivatives show potential for the development of cancer chemotherapeutic drugs.  相似文献   

11.
Functional bacterial amyloids (FuBA) are intrinsically disordered proteins (IDPs) which rapidly and efficiently aggregate, forming extremely stable fibrils. The conversion from IDP to amyloid is evolutionarily optimized and likely couples folding to association. Many FuBA contain several imperfect repeat sequences which contribute to the stability of mature FuBA fibrils. Aggregation can be considered an intermolecular extension of the process of intramolecular protein folding which has traditionally been studied using chemical denaturants. Here we employ denaturants to investigate folding steps during fibrillation of CsgA and FapC. We quantify protein compactification (i.e. the extent of burial of otherwise exposed surface area upon association of proteins) during different stages of fibrillation based on the dependence of fibrillation rate constants on the denaturant concentration (m-values) determined from fibrillation curves. For both proteins, urea mainly affects nucleation and elongation (not fragmentation), consistent with the fact that these steps involve both intra- and intermolecular association. The two steps have similar m-values, indicating that activation steps in nucleation and elongation involve the same level of folding. Surprisingly, deletion of two or three repeats from FapC leads to larger m-values (i.e. higher compactification) during the activation step of fibril growth. This observation is extended by SAXS analysis of the fibrils which indicates that weakening of the amyloidogenic core caused by repeat deletions causes a larger portion of normally unstructured regions of the protein to be included into the amyloid backbone. We conclude that the sensitivity of fibrillation to denaturants can provide useful insight into molecular mechanisms of aggregation.  相似文献   

12.
The current work clarifies the negative effects of excess exposure to boric acid (H3BO3) as a boron-containing compound on rats and the possible ameliorative effect of melatonin (MEL). Forty rats were equally divided into 5 groups as follows: group 1 was treated as control while groups 2, 3, 4 and 5 were orally administered corn oil (0.5 ml), H3BO3 (1330 mg/kg BW), MEL (10 mg/kg BW) and H3BO3 + MEL for 28 consecutive days, respectively. At the end of the experiment, blood was sampled for biochemical and hematological analysis and tissues were collected for histopathological examination. The obtained results demonstrated that the exposure to H3BO3 induced hepatorenal dysfunctions, alterations in bone-related minerals and hormones levels, prostaglandin E2 as inflammatory mediator and hematological indices. H3BO3 induced histological alterations in the liver, kidneys, bone and skin. The co-administration of MEL with H3BO3 resulted in a significant improvement in most of the measured parameters and restoration of morpho-functional state of different organs compared to the H3BO3 group. In conclusion, the study clearly demonstrated that H3BO3- induced various adverse effects and that melatonin may be beneficial in a partial mitigating the H3BO3 and may represent a novel approach in the counteracting its toxicity.  相似文献   

13.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   

14.
Efficient cell division of Gram-negative bacteria requires the presence of the Tol-Pal system to coordinate outer membrane (OM) invagination with inner membrane invagination (IM) and peptidoglycan (PG) remodeling. The Tol-Pal system is a trans-envelope complex that connects the three layers of the cell envelope through an energy-dependent process. It is composed of the three IM proteins, TolA, TolQ and TolR, the periplasmic protein TolB and the OM lipoprotein Pal. The proteins of the Tol-Pal system are dynamically recruited to the cell septum during cell division. TolA, the central hub of the Tol-Pal system, has three domains: a transmembrane helix (TolA1), a long second helical periplasmic domain (TolA2) and a C-terminal globular domain (TolA3). The TolQR complex uses the PMF to energize TolA, allowing its cyclic interaction via TolA3 with the OM TolB-Pal complex. Here, we confirm that TolA2 is sufficient to address TolA to the site of constriction, whereas TolA1 is recruited by TolQ. Analysis of the protein localization as function of the bacterial cell age revealed that TolA and TolQ localize earlier at midcell in the absence of the other Tol-Pal proteins. These data suggest that TolA and TolQ are delayed from their septal recruitment by the multiple interactions of TolA with TolB-Pal in the cell envelope providing a new example of temporal regulation of proteins recruitment at the septum.  相似文献   

15.
The N-terminal domain of dynein intermediate chain (N–IC) is central to the cytoplasmic dynein ‘cargo attachment subcomplex’ and regulation of motor activity. It is a prototypical intrinsically disordered protein (IDP), serving as a primarily disordered polybivalent molecular scaffold for numerous binding partners, including three dimeric dynein light chains and coiled coil domains of dynein partners dynactin p150Glued and NudE. At the very N-terminus, a 40 amino acid single alpha helix (SAH) forms the major binding site for both p150Glued and NudE, while a shorter nascent helix (H2) separated from SAH by a disordered linker, is necessary for tight binding to dynactin p150Glued but not to NudE. Here we demonstrate that transient tertiary interactions in this highly dynamic protein underlie the differences in its interactions with p150Glued and NudE. NMR paramagnetic relaxation enhancement experiments and restrained molecular dynamics simulations identify interactions between the two non-contiguous SAH and H2 helical regions, the extent of which correlates with the length and stability of H2, showing clearly that tertiary and secondary structure formation are coupled in IDPs. These interactions are significantly attenuated when N–IC is bound to NudE, suggesting that NudE binding shifts the conformational ensemble to one that is more extended and with less structure in H2. While the intrinsic disorder and flexibility in N–IC modulate its ability to serve as a binding platform for numerous partners, deviations of this protein from random-coil behavior provide a process for regulating these binding interactions and potentially the dynein motor.  相似文献   

16.
We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (Tm) of C145A mutant, unlike H41A, increases by 6.8 °C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [(-6)MProH41A and (-6*)MProH41A, respectively], and its corresponding mature MProH41A were systematically examined. While the H41A mutation exerts negligible effect on Tm and dimer dissociation constant (Kdimer) of MProH41A, relative to the wild type MPro, both miniprecursors show a 4–5 °C decrease in Tm and > 85-fold increase in Kdimer as compared to MProH41A. The Kd for the binding of the covalent inhibitor GC373 to (-6*)MProH41A increases ~12-fold, relative to MProH41A, concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers’ oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1–2 and 302–306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.  相似文献   

17.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   

18.
19.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   

20.
ObjectiveTo evaluate the genotype-phenotype relationship and the effect of treatment on the clinical course of osteogenesis imperfecta (OI).MethodsWe established a Chinese hospitalized cohort with OI and followed them up for an average of 6 years. All patients were confirmed as having OI using whole-exome sequencing. We analyzed the genotype-phenotype relationship based on different types, pathogenic mechanisms, and gene inheritance patterns of OI. Additionally, we assessed whether there was a difference in treatment efficacy based on genotype.ResultsOne hundred sixteen mutations in 6 pathogenic genes (COL1A1, COL1A2, IFITM5, SERPINF1, FKBP10, and WNT1) were identified in 116 patients with type I, III, IV, V, VI, XI, or XV OI. Compared with patients with COL1A1 mutations, patients with COL1A2 mutations were younger at the time of the first fracture, whereas other phenotypes were similar. When 3 groups (helical, haploinsufficiency, and non-collagen I gene mutations) were compared, patients with helical mutations were the shortest and most prone to dentinogenesis imperfecta. Patients with haploinsufficiency mutations were the oldest at the time of the first fracture. Moreover, patients with non-collagen I gene mutations were least susceptible to blue sclerae and had the highest fracture frequency. Furthermore, there were some minor phenotypic differences among non-collagen I gene mutations. Interestingly, pamidronate achieved excellent results in the treatment of patients with OI, and the treatment effect appeared to be unrelated to their genotypes.ConclusionOur findings indicated a genotype-phenotype relationship and a similar effect of pamidronate treatment in patients with OI, which could provide a basis for guiding clinical treatment and predicting OI prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号