首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   89篇
  国内免费   23篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   13篇
  2019年   24篇
  2018年   34篇
  2017年   24篇
  2016年   16篇
  2015年   18篇
  2014年   33篇
  2013年   120篇
  2012年   23篇
  2011年   43篇
  2010年   26篇
  2009年   44篇
  2008年   54篇
  2007年   44篇
  2006年   57篇
  2005年   47篇
  2004年   31篇
  2003年   24篇
  2002年   37篇
  2001年   23篇
  2000年   15篇
  1999年   20篇
  1998年   21篇
  1997年   21篇
  1996年   17篇
  1995年   26篇
  1994年   16篇
  1993年   22篇
  1992年   28篇
  1991年   21篇
  1990年   30篇
  1989年   13篇
  1988年   6篇
  1987年   9篇
  1986年   4篇
  1985年   18篇
  1984年   44篇
  1983年   31篇
  1982年   36篇
  1981年   26篇
  1980年   18篇
  1979年   24篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1236条查询结果,搜索用时 15 毫秒
1.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
2.
We report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.e. conditions under which the proteins cannot be considered as objects independent of each other. We thus address the question at which concentration this crowding starts to influence the static and in particular also the dynamical behaviour. We also briefly discuss qualitatively which charge effects, i.e. effects due to the interplay of charged molecules in an electrolyte solution, may be anticipated. Both the issue of crowding as well as that of charge effects are particularly relevant for proteins and their function under physiological conditions, where the protein volume fraction can be up to approximately 40% and salt ions are ubiquitous. The interpretation of the data is put in the context of existing studies on related systems and of existing theoretical models.  相似文献   
3.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
4.
5′-Methylthio[U-14C]adenosine was used as a culture supplement for Candida utilitis. The resulting S-adenosylmethionine was hydrolyzed into its structural components. Virtually none of the label of the pentose was found in the carbohydrate part of the intracellular S-adenosylmethionine. Much of it was present in the four-carbon chain of the methionine part of the sulfonium compound. The U-14C)-labeled adenine of 5′-methylthio[U-14C]adenosine did not contribute to the labeling of the amino acid component of the sulfonium compound.  相似文献   
5.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   
6.
A reagent (I, N4-(9-fluorenylmethyloxycarbonyl-4-amino-1-oxyl-4-succinimidyloxycarbonyl-2,2,6,6-tetramethylpiperidine)) that acylates calmodulin specifically at lysines 75 and 148 was recently described (Jackson and Puett, 1984). Chromatographic procedures are described that permit purification to apparent homogeneity of a 1 : 1 and a 2 : 1 adduct characterized by modification at just Lys 75 or at Lys 75 and Lys 148, respectively. These adducts are suitable for detailed characterization in an effort to provide information on calmodulin structure-function relationships. The adducts were incapable of, or exhibited low potency (e.g., 0.1% that of calmodulin) in, stimulating the activity of an activatable bovine brain cyclic nucleotide phosphodiesterase (3,5-cyclic AMP 5-nucleotidehydrolase, EC 3.1.4.17) preparation. Electron paramagnetic resonance (EPR) spectroscopy of the adducts yielded rotational correlation times of approximately 3–6 nsec, in agreement with the expected value for a hydrated protein of this molecular weight (5–7 nsec). Thus, the nitroxide reporter group appears to monitor closely the motion of the protein, and there is no evidence of a major conformational change in the derivative relative to calmodulin. Interestingly, removal of the fluorenylmethyloxycarbonyl portion from the 1 : 1 adduct to give a deprotected 1 : 1 adduct resulted in apparent greater mobility of the probe, since the rotational correlation coefficient was found to be 1 nsec. Circular dichroic spectra were obtained over the wavelength interval 200–250 nm on the two adducts and on the deprotected 1 : 1 adduct. These derivatives, like calmodulin, exhibited a Ca2+-mediated increase in helicity, and the spectra of the adducts in the presence of a chelating agent and in the presence of saturating Ca2+ were similar to those obtained for calmodulin. Thus, the adducts have secondary structures similar to the native protein. Proton nuclear magnetic resonance spectra were determined in the aromatic region (6–8 ppm) for the deprotected 1 : 1 adduct before and after reduction of the nitroxide with ascorbate. The nitroxide had little effect on the chemical shifts of the two tyrosines and the single histidine relative to calmodulin, although the histidine C4 resonance was markedly altered by the addition of ascorbate. In order to explore in greater detail the tertiary structure of the 1 : 1 adduct, a reagent similar to I, but not paramagnetic, was synthesized. This compound II, -N-(9-fluorenylmethyloxycarbonyl)alanine N-hydroxysuccinimide ester, like I, forms a 1 : 1 adduct at Lys 75 and a 2 : 1 adduct at Lys 75 and Lys 148. Proton NMR spectra of adducts with II were not complicated by the relaxation effects arising from adducts with I; thus more definitive assignments could be made to the upfield resonances, including the fluorene protons. Again, it was possible to conclude that adduct formation had no major effect on the tertiary structure of the protein as monitored by chemical shifts associated with various residues. We conclude that modification of just Lys 75, a residue in the long connecting helix of calmodulin, does not lead to major changes in protein conformation but does interfere with the ability of calmodulin to stimulate an activatable form of bovine brain cyclic nucleotide phosphodiesterase.  相似文献   
7.
Two possible reasons for the structural alterations of cell membranes caused by free radicals are lipid peroxidation and an increase in the intracellular calcium ion concentration. To characterize the alterations in membrane molecular dynamics caused by oxygen-derived free radicals and calcium, human erythrocytes were spin-labeled with 5-doxyl stearic acid, and alterations in membrane fluidity were quantified by electron spin resonance oxidase (0.07 U/mL) decreased membrane fluidity, and the addition of superoxide dismutase and catalase inhibited the effect on membrane fluidity of the hypoxanthine-xanthine oxidase system. Hydrogen peroxide (0.1 and 1 nM) also decreased membrane fluidity and caused alterations to erythrocyte morphology. In addition, a decrease in membrane fluidity was observed in erythrocytes incubated with 2.8 mM CaCl2. On the other hand, incubation of erythrocytes with calcium-free solution decreased the changes in membrane fluidity caused by hydrogen peroxide.

These results suggest that changes in membrane fluidity are directly due to lipid peroxidation and are indirectly the result of increased intracellular calcium concentration. We support the hypothesis that alterations of the biophysical properties of membranes caused by free radicals play an important role in cell injury, and that the accumulation of calcium amplifies the damge to membranes weakened by free radicals.  相似文献   

8.
应用ESR和自旋捕集相结合的技术直接测定了过硫酸铵—N,N,N′,N′-四甲基乙二胺(AP-TEMED)体系产生的氧自由基,经计算机波谱模拟和计算波谱参数证实该体系产生的氧自由基是O_2~-和·OH。并用维生素C、茶多酚、超氧化物歧化酶等氧自由基清除剂,从聚丙烯酰胺凝胶法、化学发光法和脂质过氧化法不同角度研究了AP-TEMED体系在自由基研究方面的应用意义。  相似文献   
9.
用马来酰亚胺自旋标记研究库存血红细胞膜蛋白质构象   总被引:2,自引:0,他引:2  
用两种马来酰亚胺自旋标记物—马来酰亚胺Ⅰ和马来酰亚胺Ⅴ研究了红细胞膜蛋白质构象及巯基结合位点性质在ACD-B方库存血保存期间的动态变化。结果发现,在35天的血液保存期间,马来酰亚胺Ⅰ所标记红细胞膜的S/w值很快下降到一低水平,而马来酰亚胺Ⅴ所标记红细胞膜的旋转相关时间则呈现迅速下降后缓慢升高的双相性变化。作者结合膜蛋白构象及其周围微观环境进行了讨论。  相似文献   
10.
ESR spin trapping technique was used to detect and analyze free radical formation. When 6-hydroxydomine (6-OHDA) was incubated alone or in the presence of a free radical generating system (H2O2 and FeSO4), hydroxyl free radicals were observed in a concentration-dependent manner. Glutathione was found to be the most effective scavenger of the ESR signal when compared with vitamin E or Mannitol. The addition of ethanol resulted in the formation of the pure hydroxyethyl free radicals. The amount of hydroxyethyl free radicals in the system was dependent upon the concentration of ethanol and the formation of hydroxyethyl free radicals correlated well with the extent of lipid peroxidation and the loss of enzymic activity of the membrane-bound (Na+, K+)-ATPase. We suggest that in the biological system ethanol may potentiate the neurotoxicity of 6-OHDA with the formation of hydroxyethyl free radicals, which are longer-lived and far more damaging to membranes that the hydroxyl radicals. These data lead us to further hypothesize that the neuronal degeneration caused by 6-OHDA and other compounds that generate free radicals could be potentiated in the presence of ethanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号