首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  国内免费   2篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2016年   4篇
  2015年   6篇
  2014年   11篇
  2013年   19篇
  2012年   11篇
  2011年   17篇
  2010年   12篇
  2009年   17篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
排序方式: 共有145条查询结果,搜索用时 203 毫秒
1.
Connective tissue growth factor (CTGF/CCN2) is overexpressed in diabetes. Diabetic rats possess myocardial and cardiomyocyte hypertrophy. In a recent report, Wang and colleagues (Am J Physiol Cell Physiol. 2009 Jul 22. [Epub ahead of print]) show that CCN2 directly mediates cardiomyocyte hypertrophy as well as that induced by high glucose and fatty acid. CCN2 acted via the TrkA receptor. These data are the subject of this commentary, and emphasize that CCN2 may be an excellent target for therapy in diabetes.  相似文献   
2.
Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines.  相似文献   
3.
Myocardial fibrosis (MF) is one of the basic causes of many cardiovascular diseases. Noncoding RNAs (ncRNAs), including microRNA (miRNA) and long noncoding RNA (lncRNA), have been reported to play an indispensable role in MF. The current work is focused on investigating the biological role of lncRNA taurine upregulation gene 1 (TUG1) in activating cardiac myofibroblasts as well as the underlying mechanism. The outcome revealed that after myocardial infarction TUG1 expression increased and miR-133b expression decreased in the rat model of MF. The expression level of TUG1 increased following AngII treatment in cardiac myofibroblast. TUG1 knockdown inhibited the Ang-II induced cardiac myofibroblast activation and TUG1 overexpression increased proliferation and collagen generation of cardiac myofibroblasts. Bioinformatic prediction programs predicted that TUG1 had MRE directly combined with miR-133b seed sequence, luciferase activity, and RIP experiments indicated that TUG1, acted as a sponger and interacted with miR-133b in cardiac myofibroblasts. Furthermore, a target of miR-133b was CTGF and CTGF knockdown counteracted the promotion of MF by miR-133b knockdown. Collectively, our study suggested that TUG1 mediates CTGF expression by sponging miR-133b in the activation of cardiac myofibroblasts. The current work reveals a unique role of the TUG1/miR-133b/CTGF axis in MF, thus suggesting its immense therapeutic potential in the treatment of cardiac diseases.  相似文献   
4.
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
5.
《Autophagy》2013,9(12):2193-2207
Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC3-II/-I ratios and decreased SQSTM1/p62 levels. Autophagy was associated with acquisition of markers of myofibroblast differentiation including increased protein levels of ACTA2/αSMA (actin, α 2, smooth muscle, aorta), enhanced gene and protein levels of COL1A1 (collagen, type I, α 1) and COL3A1, and the formation of stress fibers. Inhibiting autophagy with 3 different class I phosphoinositide 3-kinase and class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitors or through ATG7 silencing prevented myofibroblast differentiation. Autophagic fibroblasts showed increased expression and secretion of CTGF (connective tissue growth factor), and CTGF silencing prevented myofibroblast differentiation. Phosphorylation of the MTORC1 target RPS6KB1/p70S6K kinase was abolished in starved fibroblasts. Phosphorylation of AKT at Ser473, a MTORC2 target, was reduced after initiation of starvation but was followed by spontaneous rephosphorylation after 2 d of starvation, suggesting the reactivation of MTORC2 with sustained autophagy. Inhibiting MTORC2 activation with long-term exposure to rapamycin or by silencing RICTOR, a central component of the MTORC2 complex abolished AKT rephosphorylation. Both RICTOR silencing and rapamycin treatment prevented CTGF and ACTA2 upregulation, demonstrating the central role of MTORC2 activation in CTGF induction and myofibroblast differentiation. Finally, inhibition of autophagy with PtdIns3K inhibitors or ATG7 silencing blocked AKT rephosphorylation. Collectively, these results identify autophagy as a novel activator of MTORC2 signaling leading to CTGF induction and myofibroblast differentiation.  相似文献   
6.
7.
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.  相似文献   
8.
Growth differentiation factor‐15 (GDF‐15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF‐15 and CCN2 using yeast two‐hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF‐15 and His‐tagged CCN2 produced in PC‐3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF‐15 blocks CCN2‐mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF‐15 inhibits CCN2‐mediated angiogenesis, activation of αVβ3 integrins and focal adhesion kinase (FAK) was examined. CCN2‐mediated FAK activation was inhibited by GDF‐15 and was accompanied by a decrease in αVβ3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF‐15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF‐15 may provide insight into the functional role of GDF‐15 in disease states. J. Cell. Biochem. 114: 1424–1433, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
目的:研究红花水提取液对系统性硬皮病(SSc)模型小鼠的防治作用及相关机制研究。方法:60只 BALB /C小鼠随机分为对照组、模型组、强的松组、红花低、中、高剂量组,每组10只。对照组背部注射生理盐水,其余5组均背部皮下注射100 μl浓度为 200 μg /ml的注射用盐酸博来霉素,每天1次,连续注射28 d,制备SSc模型;造模同时对照组和模型组给予生理盐水10 ml/kg灌胃,强的松组给予强的松溶液4.5 mg/kg (10 ml/kg)灌胃,红花低、中、高剂量组分别给予红花1.5、3、6 g/kg (10 ml/kg)灌胃,各组均连续灌胃28 d。给药28 d后,取各组小鼠背部注射博来霉素区皮肤组织切片测量真皮厚度,采用水解法检测皮肤组织羟脯氨酸(HYP)含量;采用ELISA法检测皮肤组织结缔组织生长因子(CTGF)、转化生长因子-β(TGF-β)含量及血清白细胞介素-6(IL-6)、白细胞介素-17(IL-17)水平。结果:与对照组比较,模型组皮肤真皮厚度,皮肤组织CTGF、TGF-β、HYP含量及血清 IL-6、IL-17 水平明显升高(P<0.05);与模型组比较,强的松组、红花低、中、高剂量组皮肤真皮厚度,皮肤组织 CTGF、TGF-β、HYP含量及血清 IL-6、IL-17水平明显降低(P<0.05)。结论:红花水提取液可改善SSc小鼠皮肤状况(或真皮厚度),其作用机制可能与减轻免疫炎症反应有关。  相似文献   
10.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号