首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   30篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   5篇
  2000年   10篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   8篇
  1991年   13篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1984年   3篇
  1981年   2篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
1.
2.
Hematopoietic stem cells (HSCs) are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L) was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein–protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.  相似文献   
3.

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.  相似文献   
4.
Our laboratory has recently cloned and characterized two testes-expressed loci--the Tcp-10 gene family cluster and the D17Si11 gene--that map to the proximal portion of mouse chromosome 17. Human homologs of both loci have been identified and cloned. Somatic cell hybrid lines have been used to map the human homolog of D17Si11 to the short arm of chromosome 6 (p11-p21.1) along with homologs of other genes from the (Pim-1)-(Pgk-2) region of the mouse chromosome. The human TCP 10 locus maps to the long arm of chromosome 6 (q21-qter) along with homologs of other genes from the mouse chromosome 17 region between the centromere and Pim-1. The mapping of large portions of the mouse t haplotype to unlinked regions on human chromosome 6 rules out the possibility that a t-haplotype-like chromosome could exist in humans.  相似文献   
5.
6.
A 1,161-bp EcoRI fragment from the 5' end of the cDNA coding for human factor XIIIa (gene symbol F13A) was used to identify RFLPs in human DNAs. Several different RFLPs were identified with 15 different restriction enzymes. Two RFLPs detected with the restriction enzyme BamHI and one multiallelic RFLP detected with BclI were used for further studies. Linkage relationships between these three polymorphisms and the HLA complex were studied in DNA samples from the 40 Centre d'Etude du Polymorphisme Humain families. Combining all of the data to form highly informative haplotypes, we found linkage to HLA with a maximum lod score of 11.44 at a recombination fraction of .25 for males and .35 for females. These three RFLPs at the FXIIIa locus provide a highly informative marker for the short arm of chromosome 6 with an observed heterozygosity of 91%. Using this marker and the HLA locus, one can confirm or exclude the assignment of gene loci to most of chromosome 6p.  相似文献   
7.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   
8.
A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.  相似文献   
9.
We have identified a four-generation family with 10 affected females manifesting one or more of the following features: osseous dysplasia involving the metacarpals, metatarsals, and phalanges leading to brachydactyly, camptodactyly, and other digital deformities; pigmentary defects on the face and scalp; and multiple frenula. There were no affected males. We performed X-inactivation studies on seven affected females, using a methylation assay at the androgen receptor locus; all seven demonstrated preferential inactivation of their maternal chromosomes carrying the mutation, and two unaffected females showed a random pattern. These findings indicate that this disorder is linked to the X chromosome. To map the gene for this disorder, we analyzed DNA from nine affected females and five unaffected individuals, using 40 polymorphic markers evenly distributed throughout the X chromosome. Two-point and multipoint linkage analyses using informative markers excluded most of the X chromosome and demonstrated linkage to a region on the long arm between DXS548 and Xqter. A maximum LOD score of 3.16 at recombination fraction 0 was obtained for five markers mapping to Xq27.3-Xq28. The mapping data should facilitate the identification of the molecular basis of this disorder.  相似文献   
10.
Wang VY  Rose MF  Zoghbi HY 《Neuron》2005,48(1):31-43
The rhombic lip (RL) is an embryonic proliferative neuroepithelium that generates several groups of hindbrain neurons. However, the precise boundaries and derivatives of the RL have never been genetically identified. We use beta-galactosidase expressed from the Math1 locus in Math1-heterozygous and Math1-null mice to track RL-derived cells and to evaluate their developmental requirements for Math1. We uncover a Math1-dependent rostral rhombic-lip migratory stream (RLS) that generates some neurons of the parabrachial, lateral lemniscal, and deep cerebellar nuclei, in addition to cerebellar granule neurons. A more caudal Math1-dependent cochlear extramural stream (CES) generates the ventral cochlear nucleus and cochlear granule neurons. Similarly, mossy-fiber precerebellar nuclei require Math1, whereas the inferior olive and locus coeruleus do not. We propose that Math1 expression delimits the extent of the rhombic lip and is required for the generation of the hindbrain superficial migratory streams, all of which contribute neurons to the proprioceptive/vestibular/auditory sensory network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号