首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force–elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.  相似文献   

2.
Ligament sprains, defined as tearing of bands of fibrous tissues within ligaments, account for a majority of injuries to the foot and ankle complex in field-based sports. External rotation of the foot is considered the primary injury mechanism of syndesmotic ankle sprains with concomitant flexion and inversion/eversion associated with particular patterns of ligament trauma. However, the influence of the magnitude and direction of loading vectors to the ankle on the in situ stress state of the ligaments has not been quantified in the literature. The objective of the present study was to search for the maximum injury tolerance of a human foot with an acceptable subfailure distribution of individual ligaments. We used a previously developed and comprehensively validated foot and ankle model to reproduce a range of combined foot rotation experienced during high-risk sports activities. Biomechanical computational investigation was performed on initial foot rotation from \(20{^{\circ }}\) of plantar flexion to \(15{^{\circ }}\) of dorsiflexion, and from \(15{^{\circ }}\) of inversion to \(15{^{\circ }}\) of eversion prior to external rotation. Change in initial foot rotation shifted injury initiation among different ligaments and resulted in a wide range of injury tolerances at the structural level (e.g., 36–125 Nm of rotational moment). The observed trend was in agreement with a parallel experimental study that initial plantar flexion decreased the incidence of syndesmotic injury compared to a neutral foot. A mechanism of distributing even loads across ligaments subjected to combined foot rotations was identified. This mechanism is potential to obtain the maximum load-bearing capability of a foot and ankle while minimizing the injury severity of ligaments. Such improved understanding of ligament injuries in athletes is necessary to facilitate injury management by clinicians and countermeasure development by biomechanists.  相似文献   

3.
Ligament sprains account for a majority of injuries to the foot and ankle complex among athletic populations. The infeasibility of measuring the in situ response and load paths of individual ligaments has precluded a complete characterization of their mechanical behavior via experiment. In the present study a fiber-based modeling approach of in situ ankle ligaments was developed and validated for determining the heterogeneous force-elongation characteristics and the consequent injury patterns. Nine major ankle ligaments were modeled as bundles of discrete elements, corresponding functionally to the structure of collagen fibers. To incorporate the progressive nature of ligamentous injury, the limit strain at the occurrence of fiber failure was described by a distribution function ranging from 12% to 18% along the width of the insertion site. The model was validated by comparing the structural kinetic and kinematic response obtained experimentally and computationally under well-controlled foot rotations. The simulation results replicated the 6 degree-of-freedom bony motion and ligamentous injuries and, by implication, the in situ deformations of the ligaments. Gross stiffness of the whole ligament derived from the fibers was comparable to existing experimental data. The present modeling approach provides a biomechanically realistic, interpretable and computationally efficient way to characterize the in situ ligament slack, sequential and heterogeneous uncrimping of collagen fascicles and failure propagation as the external load is applied. Applications of this model include functional ankle joint mechanics, injury prevention and countermeasure design for athletes.  相似文献   

4.
Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular ligament in the inversion stability study, a major increase in force was seen in several of the ligaments on the lateral aspect of the foot and ankle, indicating the recruitment of other structures to permit function after injury. Overall, the computational models were able to predict joint kinematics of the lower leg with particular focus on the ankle complex. This same approach can be taken to create models of other limb segments such as the elbow and wrist. Additional parameters can be calculated in the models that are not easily obtained experimentally such as ligament forces, force transmission across joints, and three-dimensional movement of all bones. Muscle activation can be incorporated in the model through the action of applied forces within the software for future studies.  相似文献   

5.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

6.
A geometric model of the human ankle joint.   总被引:1,自引:0,他引:1  
A two-dimensional four-bar linkage model of the ankle joint is formulated to describe dorsi/plantarflexion in unloaded conditions as observed in passive tests on ankle complex specimens. The experiments demonstrated that the human ankle joint complex behaves as a single-degree-of-freedom system during passive motion, with a moving axis of rotation. The bulk of the movement occurred at the level of the ankle. Fibres within the calcaneofibular and tibiocalcaneal ligaments remained approximately isometric. The experiments showed that passive kinematics of the ankle complex is governed only by the articular surfaces and the ligaments. It was deduced that the ankle is a single-degree-of-freedom mechanism where mobility is allowed by the sliding of the articular surfaces upon each other and the isometric rotation of two ligaments about their origins and insertions, without tissue deformation. The linkage model is formed by the tibia/fibula and talus/calcaneus bone segments and by the calcaneofibular and tibiocalcaneal ligament segments. The model predicts the path of calcaneus motion, ligament orientations, instantaneous axis of rotation, and conjugate talus surface profile as observed in the experiments. Many features of ankle kinematics such as rolling and multiaxial rotation are elucidated. The geometrical model is a necessary preliminary step to the study of ankle joint stability in response to applied loads and can be used to predict the effects of changes to the original geometry of the intact joint. Careful reconstruction of the original geometry of the ligaments is necessary after injury or during total ankle replacement.  相似文献   

7.
Total ankle replacement (TAR) designs have still several important issues to be addressed before the treatment becomes fully acceptable clinically. Very little is known about the performance, in terms of the contact pressures and kinematics of TAR when subjected to daily activities such as level gait. For this purpose, an explicit finite element model of a novel 3-component TAR was developed, which incorporated a previously validated mechanical model of the ankle ligament apparatus. The intermediate mobile polyethylene meniscal bearing was modelled as an elastic-plastic continuum while the articulating surfaces of the tibial and talar metal components as rigid bodies. Overall kinematics, contact pressures and ligament forces were analysed during passive, i.e. virtually unloaded, and active, i.e. stance phase of gait, conditions. Simulation of passive motion predicted similar kinematics as reported previously in an analytical four-bar linkage model. The meniscal bearing was observed to move 5.6 mm posteriorly during the simulated stance and the corresponding antero-posterior displacement of the talar component was 8.3 mm. The predicted pattern and the amount (10.6 degrees ) of internal-external rotation of the ankle complex were found to be in good agreement with corresponding in vivo measurements on normal ankles. A peak contact pressure of 16.8 MPa was observed, with majority of contact pressures below 10 MPa. For most ligaments, reaction forces remain within corresponding physiological ranges. A first realistic representation of the biomechanical behaviour of the human ankle when replaced by prosthetic joints is provided. The applied methodology can potentially be applied to other TAR designs.  相似文献   

8.
A validated three-dimensional computational model of a human knee joint   总被引:7,自引:0,他引:7  
This paper presents a three-dimensional finite element tibio-femoral joint model of a human knee that was validated using experimental data. The geometry of the joint model was obtained from magnetic resonance (MR) images of a cadaveric knee specimen. The same specimen was biomechanically tested using a robotic/universal force-moment sensor (UFS) system and knee kinematic data under anterior-posterior tibial loads (up to 100 N) were obtained. In the finite element model (FEM), cartilage was modeled as an elastic material, ligaments were represented as nonlinear elastic springs, and menisci were simulated by equivalent-resistance springs. Reference lengths (zero-load lengths) of the ligaments and stiffness of the meniscus springs were estimated using an optimization procedure that involved the minimization of the differences between the kinematics predicted by the model and those obtained experimentally. The joint kinematics and in-situ forces in the ligaments in response to axial tibial moments of up to 10 Nm were calculated using the model and were compared with published experimental data on knee specimens. It was also demonstrated that the equivalent-resistance springs representing the menisci are important for accurate calculation of knee kinematics. Thus, the methodology developed in this study can be a valuable tool for further analysis of knee joint function and could serve as a step toward the development of more advanced computational knee models.  相似文献   

9.
The foot-ankle complex is a key-element to mitigate impact forces during jump-landing activities. Biomechanical studies commonly model the foot as a single-segment, which can provide different ankle kinematics compared to a multi-segmented model. Also, it can neglect intersegmental kinematics of the foot-ankle joints, such as the hindfoot-tibia, forefoot-hindfoot, and hallux-forefoot joints, that are used during jump-landing activities. The purpose of this short communication was to compare ankle kinematics between a three- and single-segmented foot models, during forward and lateral single-leg jump-landings. Marker trajectories and synchronized ground reaction forces of 30 participants were collected using motion capture and a force plate, during multidirectional single-leg jump-landings. Ankle kinematics were computed using a three- (hindfoot-tibia) and a single-segmented (ankle) foot models, at initial contact (IC), peak vertical ground reaction force (PvGRF) and peak knee flexion (PKF). Repeated measures ANOVAs were conducted (p < 0.05). The findings of this study showed that during lateral and forward jump-landing directions, the three-segmented foot model exhibited lower hindfoot-tibia dorsiflexion angles (PvGRF and PKF, p < 0.001) and excursions (sagittal: p < 0.001; frontal: p < 0.05) during the weightbearing acceptance phase than the single-segmented model. Overall, the two foot models provided distinctive sagittal ankle kinematics, with lower magnitudes in the hindfoot-tibia of the three-segmented foot. Furthermore, the three-segmented foot model may provide additional and representative kinematic data of the ankle and foot joints, to better comprehend its function, particularly in populations whose foot-ankle complex plays an important role (e.g., dancers).  相似文献   

10.
It is clinically challenging to distinguish between ankle and subtalar joints instability in vivo. Understanding the changes in load-displacement at the ankle and subtalar joints after ligament injuries may detect specific changes in joint characteristics that cannot be detected by investigating changes in range of motion alone. The effect of restricting joints end range of motion with ankle braces was already established, but little is known about the effect of an ankle brace on the flexibility of the injured ankle and subtalar joints. Therefore, the purposes of this study were to (1) understand how flexibility is affected at the ankle and subtalar joints after sectioning lateral and intrinsic ligaments during combined sagittal foot position and inversion and during internal rotation and (2) investigate the effect of a semi-rigid ankle brace on the ankle and subtalar joint flexibility. Kinematics and kinetics were collected from nine cadaver feet during inversion through the range of ankle flexion and during internal rotation. Motion was applied with and without a brace on an intact foot and after sequentially sectioning the calcaneofibular ligament (CFL) and the intrinsic ligaments. Segmental flexibility was defined as the slope of the angle-moment curve for each 1 Nm interval. Early flexibility significantly increased at the ankle and subtalar joint after CFL sectioning during inversion. The semi-rigid ankle brace significantly decreased early flexibility at the subtalar joint during inversion and internal rotation for all ligament conditions and at the ankle joint after all ligaments were cut.  相似文献   

11.
Understanding spinal kinematics is essential for distinguishing between pathological conditions of spine disorders, which ultimately lead to low back pain. It is of high importance to understand how changes in mechanical properties affect the response of the lumbar spine, specifically in an effort to differentiate those associated with disc degeneration from ligamentous changes, allowing for more precise treatment strategies. To do this, the goals of this study were twofold: (1) develop and validate a finite element (FE) model of the lumbar spine and (2) systematically alter the properties of the intervertebral disc and ligaments to define respective roles in functional mechanics. A three-dimensional non-linear FE model of the lumbar spine (L3-sacrum) was developed and validated for pure moment bending. Disc degeneration and sequential ligament failure were modelled. Intersegmental range of motion (ROM) and bending stiffness were measured. The prediction of the FE model to moment loading in all three planes of bending showed very good agreement, where global and intersegmental ROM and bending stiffness of the model fell within one standard deviation of the in vitro results. Degeneration decreased ROM for all directions. Stiffness increased for all directions except axial rotation, where it initially increased then decreased for moderate and severe degeneration, respectively. Incremental ligament failure produced increased ROM and decreased stiffness. This effect was much more pronounced for all directions except lateral bending, which is minimally impacted by ligaments. These results indicate that lateral bending may be more apt to detect the subtle changes associated with degeneration, without being masked by associated changes of surrounding stabilizing structures.  相似文献   

12.
Whiplash injuries continue to have significant societal cost; however, the mechanism and location of whiplash injury is still under investigation. Recently, the upper cervical spine ligaments, particularly the alar ligament, have been identified as a potential whiplash injury location. In this study, a detailed and validated explicit finite element model of a 50th percentile male cervical spine in a seated posture was used to investigate upper cervical spine response and the potential for whiplash injury resulting from vehicle crash scenarios. This model was previously validated at the segment and whole spine levels for both kinematics and soft tissue strains in frontal and rear impact scenarios. The model predicted increasing upper cervical spine ligament strain with increasing impact severity. Considering all upper cervical spine ligaments, the distractions in the apical and alar ligaments were the largest relative to their failure strains, in agreement with the clinical findings. The model predicted the potential for injury to the apical ligament for 15.2 g frontal or 11.7 g rear impacts, and to the alar ligament for a 20.7 g frontal or 14.4 g rear impact based on the ligament distractions. Future studies should consider the effect of initial occupant position on ligament distraction.  相似文献   

13.
Patients with subtalar joint instability may be misdiagnosed with ankle instability, which may lead to chronic instability at the subtalar joint. Therefore, it is important to understand the difference in kinematics after ligament sectioning and differentiate the changes in kinematics between ankle and subtalar instability. Three methods may be used to determine the joint kinematics; the Euler angles, the Joint Coordinate System (JCS) and the helical axis (HA). The purpose of this study was to investigate the influence of using either method to detect subtalar and ankle joints instability. 3D kinematics at the ankle and subtalar joint were analyzed on 8 cadaveric specimens while the foot was intact and after sequentially sectioning the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), the cervical ligament and the interosseous talocalcaneal ligament (ITCL). Comparison in kinematics calculated from sensor and anatomical landmarks was conducted as well as the influence of Euler angles and JCS rotation sequence (between ISB recommendation and previous research) on the subtalar joint. All data showed a significant increase in inversion when the ITCL was sectioned. There were differences in the data calculated using sensors coordinate systems vs. anatomic coordinate systems. Anatomic coordinate systems were recommended for these calculations. The Euler angle and JCS gave similar results. Differences in Euler angles and JCS sequence lead to the same conclusion in detecting instability at the ankle and subtalar joint. As expected, the HA detected instability in plantarflexion at the ankle joint and in inversion at the subtalar joint.  相似文献   

14.
Segmental motions derived from non-invasive motion analysis are being used to investigate the intrinsic functional behavior of the foot and ankle in health and disease. The goal of this research was to examine the ability of a generic segmented model of the foot to capture and differentiate changes in internal skeletal kinematics due to neuromuscular disease and/or trauma. A robotic apparatus that reproduces the kinematics and kinetics of gait in cadaver lower extremities was employed to produce motion under normal and aberrant neuromuscular activation patterns of tibialis posterior and/or tibialis anterior. Stance phase simulations were conducted on 10 donor limbs while recording three-dimensional kinematic trajectories of (1) skin-mounted markers used clinically to construct segmented foot models, and (2) bone-mounted marker clusters to capture actual internal bone motion as the gold standard for comparison. The models constructed from external marker data were able to differentiate the kinematic behaviors elicited by different neuromuscular conditions in a manner similar to that using the bone-derived data. Measurable differences between internal and externally measured kinematics were small, variable and random across the three axes of rotation and neuromuscular conditions, with a tendency toward more differences noted during early and late stance. Albeit slightly different, three-dimensional motion profiles of the hindfoot and forefoot segments correlated well with internal skeletal motion under all neuromuscular conditions, thereby confirming the utility of measuring segmental motions as a valid means of clinical assessment.  相似文献   

15.
Knee laxity, defined as the net translation or rotation of the tibia relative to the femur in a given direction in response to an applied load, is highly variable from person to person. High levels of knee laxity as assessed during routine clinical exams are associated with first-time ligament injury and graft reinjury following reconstruction. During laxity exams, ligaments carry force to resist the applied load; however, relationships between intersubject variations in knee laxity and variations in how ligaments carry force as the knee moves through its passive envelope of motion, which we refer to as ligament engagement, are not well established. Thus, the objectives of this study were, first, to define parameters describing ligament engagement and, then, to link variations in ligament engagement and variations in laxity across a group of knees. We used a robotic manipulator in a cadaveric knee model (n = 20) to quantify how important knee stabilizers, namely the anterior and posterior cruciate ligaments (ACL and PCL, respectively), as well as the medial collateral ligament (MCL) engage during respective tests of anterior, posterior, and valgus laxity. Ligament engagement was quantified using three parameters: (1) in situ slack, defined as the relative tibiofemoral motion from the neutral position of the joint to the position where the ligament began to carry force; (2) in situ stiffness, defined as the slope of the linear portion of the ligament force–tibial motion response; and (3) ligament force at the peak applied load. Knee laxity was related to parameters of ligament engagement using univariate and multivariate regression models. Variations in the in situ slack of the ACL and PCL predicted anterior and posterior laxity, while variations in both in situ slack and in situ stiffness of the MCL predicted valgus laxity. Parameters of ligament engagement may be useful to further characterize the in situ biomechanical function of ligaments and ligament grafts.  相似文献   

16.
Injuries to the lateral collateral ligaments of the ankle joint are among the most frequently occurring injuries at the lower limb. The present study was conducted for the purpose of establishing the basis for the development of a quantitative diagnostic procedure for such injuries. To achieve this goal, the effect of four types of ligament injuries on the three-dimensional mechanical characteristics of the ankle were investigated. These types of injuries consisted of: 1) isolated tear of the anterior talofibular ligament; 2) isolated tear of the calcaneofibular ligament; 3) isolated tear of the posterior talofibular ligament; and 4) combined tear of both the anterior talofibular ligament and the calcaneofibular ligament. The experiments were conducted on 31 amputated lower limbs and consisted of comparing the three-dimensional load-displacement and flexibility characteristics of the ankle joint prior to and following sectioning of selected ligaments. The experimental and analytical procedures used to derive these characteristics was developed previously by the authors. From the results of this study it was concluded that the three-dimensional flexibility characteristics of the ankle joint are strongly influenced by damage to the lateral collateral ligaments. Furthermore, it was found that each type of ligament injury produced unique and identifiably changes in the flexibility characteristics of the ankle. These unique changes, which are described in detail in this paper, can be used to discriminate between the different types of ligament injuries. Consequently, it was concluded that it is feasible to develop a quantitative diagnostic procedure for ankle ligament injuries based on the effect of the injury on the flexibility characteristics of the ankle.  相似文献   

17.
The anterior drawer test at the human ankle joint is a routine clinical examination. The relationship between the mechanical response of this joint and the flexion angle was elucidated by a recent mathematical model, using purely elastic mechanical characteristics for the ligament fibres. The objective of the present work was to assess the effect of ligament viscoelasticity on the force response of the ankle joint for anterior displacements of the foot relative to the tibia, at different ankle flexion positions. A viscoelastic model of the ligaments from the literature was included in the recently proposed mathematical model. Drawer tests were simulated at several flexion angles and for increasing velocities of the imposed anterior displacement. The stiffness of the model ankle joint increased only modestly with velocity. The response force found for a 6mm displacement at 20 degrees plantarflexion increased by only 13% for a one hundred-fold increase in velocity from 0.1 to 10 mm/s. The flexion angle was confirmed as the most influential parameter in the mechanical response of the ankle to anterior drawer test.  相似文献   

18.
The objective of this paper is to develop an analytical framework to representing the ankle–foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function ρ=ρ(φ). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE ~10%) and CoP (relative RMSE ~15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering.  相似文献   

19.
Forefoot strike becomes popular among runners because it facilitates better impact attenuation. However, forefoot strike may overload the plantar fascia and impose risk of plantar fasciitis. This study aimed to examine and compare the foot arch deformation and plantar fascia tension between different foot strike techniques in running using a computational modelling approach. A three-dimensional finite element foot model was reconstructed from the MRI of a healthy runner. The foot model included twenty bones, bulk soft tissue, ligaments, tendons, and plantar fascia. The time-series data of segmental kinematics, foot muscle force, and ankle joint reaction force were derived from a musculoskeletal model of the same participant based on the motion capture analysis and input as the boundary conditions for the finite element analysis. Rearfoot strike and forefoot strike running were simulated using a dynamic explicit solver. The results showed that, compared to rearfoot strike, forefoot strike reduced the foot arch height by 9.12% and increased the medial longitudinal arch angle by 2.06%. Forefoot strike also increased the plantar connective tissues stress by 18.28–200.11% and increased the plantar fascia tensile force by 18.71–109.10%. Although it is currently difficult to estimate the threshold value of stress or force that results in injury, forefoot strike runners appeared to be more vulnerable to plantar fasciitis.  相似文献   

20.
The objective of this study was to assess the impact of combined transection of the anterior cruciate and medial collateral ligaments on the intact and healing ligaments in the ovine stifle joint. In vivo 3D stifle joint kinematics were measured in eight sheep during treadmill walking (accuracy: 0.4±0.4 mm, 0.4±0.4°). Kinematics were measured with the joint intact and at 2, 4, 8, 12, 16 and 20 weeks after either surgical ligament transection (n=5) or sham surgery without transection (n=3). After sacrifice at 20 weeks, the 3D subject-specific bone and ligament geometry were digitized, and the 3D distances between insertions (DBI) of ligaments during the dynamic in vivo motion were calculated. Anterior cruciate ligament/medial collateral ligament (ACL/MCL) transection resulted in changes in the DBI of not only the transected ACL, but also the intact lateral collateral ligament (LCL) and posterior cruciate ligament (PCL), while the DBI of the transected MCL was not significantly changed. Increases in the maximal ACL DBI (2 week: +4.2 mm, 20 week: +5.7 mm) caused increases in the range of ACL DBI (2 week: 3.6 mm, 20 week: +3.8 mm) and the ACL apparent strain (2 week: +18.9%, 20 week: +24.0%). Decreases in the minimal PCL DBI (2 week: −3.2 mm, 20 week: −4.3 mm) resulted in increases in the range of PCL DBI (2 week: +2.7 mm, 20 week: +3.2 mm). Decreases in the maximal LCL DBI (2 week: −1.0 mm, 20 week: −2.0 mm) caused decreased LCL apparent strain (2 week: −3.4%, 20 week: −6.9%). Changes in the mechanical environment of these ligaments may play a significant role in the biological changes observed in these ligaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号