首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  2022年   2篇
  2020年   2篇
  2018年   1篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
Cocaine is an inhibitor of dopamine and serotonin reuptake by synaptic terminals and has potent reinforcing effects that lead to its abuse. Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) catalyze the rate-limiting steps in dopamine and serotonin biosynthesis, respectively, and are the subject of dynamic regulatory mechanisms that could be sensitive to the actions of cocaine. This study assessed the effects of chronic cocaine on brain TH and TPH activities. Cocaine was administered (0.33 mg/infusion, i.v.) to rats for 7 days every 8 min for 6 h per day. This administration schedule is similar to patterns of self-administration by rats when given ad libitum access to this dose. This chronic, response-independent administration increased TH enzyme activity in the substantia nigra (30%) and ventral tegmental area (43%). Moreover, TH mRNA levels were also increased (45 and 50%, respectively). In contrast to the enzymatic and molecular biological changes in the cell bodies, TH activity was unchanged in the terminal fields (corpus striaturn and nucleus accumbens). Similarly, TPH activity was increased by 50% in the raphe nucleus (serotonergic cell bodies). In summary, the chronic response-independent administration of cocaine produces increases in the expression of TH mRNA and activity in both the cell bodies of motor (nigrostriatal) and reinforcement (mesolimbic) dopamine pathways. These increases are not manifested in the terminal fields of these pathways.  相似文献   
2.
The antiapoptotic BCL2 family member MCL1 is normally up- and down-modulated in response to environmental signals and conditions, but is constitutively expressed in cancer where it promotes cell survival and drug resistance. A post-translational modification identified here, truncation at the N terminus, was found to act along with previously described ERK- and GSK3-induced phosphorylation events to regulate the turnover of the MCL1 protein and thus its availability for antiapoptotic effects. Although both N-terminally truncated and full-length MCL1 contain sequences enriched in proline, glutamic acid, serine, and threonine and were susceptible to proteasomal degradation, the truncated form decayed less rapidly and was maintained for an extended period in the presence of ERK activation. This was associated with extended cell survival because the truncated form of MCL1 (unlike those of BCL2 and BCLX) retained antiapoptotic activity. N-terminal truncation slightly increased the electrophoretic mobility of MCL1 and differed from the phosphorylation/band shift to decreased mobility, which occurs in the G2/M phase and was not found to affect MCL1 turnover. The N-terminally truncated form of MCL1 was expressed to varying extents in normal lymphoid tissues and was the predominant form present in lymphomas from transgenic mice and human tumor lines of B-lymphoid origin. The degradation versus stabilized expression of antiapoptotic MCL1 is thus controlled by N-terminal truncation as well as by ERK- and GSK3 (but not G2/M)-induced phosphorylation. These modifications may contribute to dysregulated MCL1 expression in cancer and represent targets for promoting its degradation to enhance tumor cell death.  相似文献   
3.
4.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   
5.
Novosel  N.  Mišić Radić  T.  Levak Zorinc  M.  Zemla  J.  Lekka  M.  Vrana  I.  Gašparović  B.  Horvat  L.  Kasum  D.  Legović  T.  Žutinić  P.  Gligora Udovič  M.  Ivošević DeNardis  N. 《Journal of applied phycology》2022,34(3):1293-1309
Journal of Applied Phycology - This study examines how salinity reduction triggers the response of three marine microalgae at the molecular and unicellular levels in terms of chemical, mechanical,...  相似文献   
6.
Crosses between two species of deer mouse (Peromyscus) yield dramatic parent-of-origin effects. Female P. maniculatus (BW) crossed with male P. polionotus (PO) produce animals smaller than either parent. PO females crossed with BW males yield lethal overgrowth that has been associated with loss-of-imprinting (LOI). Previously, we mapped two loci influencing fetal growth. These two loci, however, do not account for the LOI, nor for the dysmorphic phenotypes. Here we report that maternal genetic background strongly influences the LOI. Analyses of crosses wherein maternal genetic background is varied suggest that this effect is likely due to the action of a small number of loci. We have termed these putative loci Meil. Estimation of Meil loci number was confounded by skewed allelic ratios in the intercross line employed. We show that the Meil loci are not identical to any of the DNA methyltransferases shown to be involved in regulation of genomic imprinting.  相似文献   
7.
Paxillin is a 68-kDa focal adhesion-associated protein that plays an important role in controlling cell spreading and migration. Phosphorylation of paxillin regulates its biological activity and thus has warranted investigation. Serine 126 and serine 130 were previously identified as two major extracellular signal-regulated kinase (ERK)-dependent phosphorylation sites in Raf-transformed fibroblasts. Here serine 126 is identified as a phosphorylation site induced by lipopolysaccharide (LPS) stimulation of RAW264.7 cells. A number of other stimuli, including adhesion and colony-stimulating factor, induce serine 126 phosphorylation in RAW264.7 cells, and nerve growth factor (NGF) treatment induces serine 126 phosphorylation in PC12 cells. The kinase responsible for phosphorylation of this site is identified as glycogen synthase kinase 3 (GSK-3). Interestingly, this GSK-3-dependent phosphorylation is regulated via an ERK-dependent priming mechanism, i.e., phosphorylation of serine 130. Phosphorylation of S126/S130 was required to promote spreading in paxillin null cells, and LPS-induced spreading of RAW264.7 cells was inhibited by expression of the paxillin S126A/S130A mutant. Furthermore, this mutant also retarded NGF-induced PC12 cell neurite outgrowth. Hence, phosphorylation of paxillin on serines 126 and 130, which is mediated by an ERK/GSK-3 dual-kinase mechanism, plays an important role in cytoskeletal rearrangement.  相似文献   
8.
This study describes a direct comparison of dopamine transporter (DAT) mRNA and protein, as well as its binding sites, in tissue from the same animals after chronic cocaine administration. Rats were treated twice daily with 25 mg/kg cocaine or with saline. After 8 days of cocaine administration, changes in DAT mRNA levels in the substantia nigra pars compacta and ventral tegmental area were measured by in situ hybridization, and DAT protein in the striatum was quantified by immunoblotting. Whereas chronic cocaine treatment significantly reduced levels of DAT mRNA in the substantia nigra pars compacta and ventral tegmental area as compared with vehicle-treated controls, cocaine treatment did not alter DAT protein levels in the striatum. Furthermore, the density of DAT binding sites was also measured in the striatum by quantitative autoradiography using two DAT radioligands, 33-(4-[125I]iodophenyl)tropane-2-carboxylic acid methyl ester ([125I]RTI-55) and [3H]propanoyl-3beta-(4-tolyl)tropane ([3H]PTT). Similar to the results of immunoblotting of DAT protein, [1251]RTI-55 and [3H]PTT binding site levels also remained unaltered. These results indicate a dissociation in the regulation of DAT mRNA and its protein levels as a result of cocaine administration in rats. This study also indicates that the DAT ligands [3H]PTT and [125I]RTI-55 provide an accurate assessment of DAT protein levels.  相似文献   
9.
Folate and other methyl-donor pathway components are widely supplemented due to their ability to prevent prenatal neural tube defects. Several lines of evidence suggest that these supplements act through epigenetic mechanisms (e.g. altering DNA methylation). Primary among these are the experiments on the mouse viable yellow allele of the agouti locus (Avy). In the Avy allele, an Intracisternal A-particle retroelement has inserted into the genome adjacent to the agouti gene and is preferentially methylated. To further test these effects, we tested the same diet used in the Avy studies on wild-derived Peromyscus maniculatus, a native North American rodent. We collected tissues from neonatal offspring whose parents were fed the high-methyl donor diet as well as controls. In addition, we assayed coat-color of a natural variant (wide-band agouti = ANb) that overexpresses agouti as a phenotypic biomarker. Our data indicate that these dietary components affected agouti protein production, despite the lack of a retroelement at this locus. Surprisingly, the methyl-donor diet was associated with defects (e.g. ovarian cysts, cataracts) and increased mortality. We also assessed the effects of the diet on behavior: We scored animals in open field and social interaction tests. We observed significant increases in female repetitive behaviors. Thus these data add to a growing number of studies that suggest that these ubiquitously added nutrients may be a human health concern.  相似文献   
10.

Background  

Deer mice (Peromyscus maniculatus) and congeneric species are the most common North American mammals. They represent an emerging system for the genetic analyses of the physiological and behavioral bases of habitat adaptation. Phylogenetic evidence suggests a much more ancient divergence of Peromyscus from laboratory mice (Mus) and rats (Rattus) than that separating latter two. Nevertheless, early karyotypic analyses of the three groups suggest Peromyscus to be exhibit greater similarities with Rattus than with Mus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号