首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that loss-of-imprinting (LOI) is a regular occurrence in interspecies hybrids of the genus Peromyscus. Furthermore, evidence was presented that indicated that LOI is involved in a placental hybrid dysgenesis effect resulting in abnormal placental growth and thus possibly in speciation. We show here that LOI of the strictly paternally expressed gene Peg1 (also called Mest) occurs in F1 hybrids between Mus musculus (MMU) and M. spretus (MSP). Peg1 LOI is correlated with increased body weight and increased weight of two of the organs tested, kidney and spleen. X-gal staining of tissues derived from Peg1(+/-) x MSP F1 mice, carrying a maternal LacZ knock-in allele of Peg1, demonstrates that LOI is stochastic in that it affects different tissues to variable extents and that, even within one tissue, not all cells are similarly affected. Furthermore, this expression from the maternal allele does not necessarily follow the endogenous paternal Peg1 expression pattern. Our results indicate that LOI occurs in interspecies hybrids in the genus Mus and that altered growth is a frequent outcome of LOI.  相似文献   

2.
Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent‐of‐origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress‐induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety‐like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet‐by‐PO effects on body weight, stress response, anxiety‐ and depressive‐like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.  相似文献   

3.
We have developed an inbred stock of mice called SELH that has a high frequency of the neural tube defect exencephaly at birth. A previous genetic study indicated that the exencephaly is due to two to three additive loci differing between SELH and a closely related normal strain, ICR/Bc, but this analysis was not designed to detect genetic maternal effects. Recently, we demonstrated that there is genetic polymorphism among normal mouse strains leading to differences in site of initiation of closure of the cranial neural tube. In the present study, an inbred substrain of SELH mice, with 24% exencephaly among embryos, was crossed with an unrelated normal strain, SWV/Bc, and the frequency of exencephaly in subsequent generations used to extend our understanding of the genetic cause of exencephaly in SELH mice. The purposes of the genetic studies reported here were twofold. First, based on the influence of genetic maternal effects on other genetically complex birth defects in mice, we hypothesized that the exencephaly of SELH mice would exhibit strong genetic maternal effects. This hypothesis was tested by comparisons among the four possible reciprocal backcrosses to SELH. The result was an overall frequency of 2.3% exencephaly in first backcross embryos with no difference among the four crosses and no evidence of genetic maternal effects. Second, the frequency of exencephaly recovered in the backcross and F1 embryos was compared with the previous genetic study and with various genetic models. The frequencies were similar to those obtained from the cross to ICR/Bc mice and were compatible with a hypothesis of additive gene action at a few loci.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
IGFII, the peptide encoded by the Igf2 gene, is a broad spectrum mitogen with important roles in prenatal growth as well as cancer progression. Igf2 is transcribed from the paternally inherited allele, whereas the linked H19 is transcribed from the maternal allele. Igf2 imprinting is thought to be maintained by differentially methylated regions (DMRs) located at multiple sites such as upstream of H19 and Igf2 and within Kvlqt1 loci. Biallelic expression (loss of imprinting (LOI)) of Igf2 is frequently observed in cancers, and a subset of Wilms' and intestinal tumors have been shown to exhibit abnormal methylation at H19DMR associated with loss of maternal H19 expression, but it is not known whether such changes are common in other neoplasms. Because cancers consist of diverse cell populations with and without Igf2 LOI, we established four independent monoclonal cell lines with Igf2 LOI from mouse hepatic tumors. We here demonstrate retention of normal differential methylation at H19, Igf2, or Kvlqt1 DMR by all of the cell lines. Furthermore, H19 was found to be expressed exclusively from the maternal allele, and levels of CTCF, a multifunctional nuclear factor that has an important role in the Igf2 imprinting, were comparable with those in normal hepatic tissues with no mutational changes detected. These data indicate that Igf2 LOI in tumor cells is not necessarily linked to abnormal methylation at H19, Igf2, or Kvlqt1 loci.  相似文献   

5.
Babies born clinically Small- or Large-for-Gestational-Age (SGA or LGA; sex- and gestational age-adjusted birth weight (BW) <10th or >90th percentile, respectively), are at higher risks of complications. SGA and LGA include babies who have experienced environment-related growth-restriction or overgrowth, respectively, and babies who are heritably small or large. However, the relative proportions within each group are unclear. We assessed the extent to which common genetic variants underlying variation in birth weight influence the probability of being SGA or LGA. We calculated independent fetal and maternal genetic scores (GS) for BW in 11,951 babies and 5,182 mothers. These scores capture the direct fetal and indirect maternal (via intrauterine environment) genetic contributions to BW, respectively. We also calculated maternal fasting glucose (FG) and systolic blood pressure (SBP) GS. We tested associations between each GS and probability of SGA or LGA. For the BW GS, we used simulations to assess evidence of deviation from an expected polygenic model.Higher BW GS were strongly associated with lower odds of SGA and higher odds of LGA (ORfetal = 0.75 (0.71,0.80) and 1.32 (1.26,1.39); ORmaternal = 0.81 (0.75,0.88) and 1.17 (1.09,1.25), respectively per 1 decile higher GS). We found evidence that the smallest 3% of babies had a higher BW GS, on average, than expected from their observed birth weight (assuming an additive polygenic model: Pfetal = 0.014, Pmaternal = 0.062). Higher maternal SBP GS was associated with higher odds of SGA P = 0.005.We conclude that common genetic variants contribute to risk of SGA and LGA, but that additional factors become more important for risk of SGA in the smallest 3% of babies.  相似文献   

6.
Body weight is one of the most important traits in any genetic improvement program in geese for at least 2 reasons. First, measurements of the trait are very easy. Second, body weight is correlated with a number of other meat performance traits. However, the genetic background of body weight shows considerable complexity. Three genetic models (with direct, maternal genetic and permanent maternal environmental effects) were employed in this study. Records of 3076 individuals of maternal strain W11 and 2656 individuals of paternal strain W33 over 6 consecutive generations, kept in the pedigree farm of Ko?uda Wielka, were analysed. Body weight (in kilograms) was measured in weeks 8 (BW8) and 11 (BW11). The inbreeding levels in both populations were relatively low (0.14% and 0.02% for W11 and W33, respectively), therefore these effects were not included in the linear models to estimate genetic parameters. Three fixed effects (hatch period, sex and year) were included in each linear model. Two criteria (AIC, BIC) were used to check the goodness of fit of the models. The computations were performed by WOMBAT software. In general, the genetic parameter estimates varied across the traits, models and strains studied. Direct additive heritability estimates ranged from 0.0001 (for BW11 of W33) to 0.55 (for BW11 of W33). Maternal and total heritabilities were also variable. Estimates of ratios of direct-maternal effect covariance in phenotypic variance were both positive and negative, but they were negligible, whereas ratios of the permanent environmental maternal variance to phenotypic variance were close to zero. Both of the applied criteria of model adequacy indicate that the model with maternal genetic and environmental effects should be considered as optimal. Genetic trends were close to zero. It seems that they were influenced by long-term selection. Similar tendencies have been observed for phenotypic trends, as well.  相似文献   

7.
Mammalian interspecies hybrids exhibit parent-of-origin effects in that offspring of reciprocal matings, even though genetically identical, frequently exhibit opposite phenotypes, especially in growth. This was also observed in hybridization with the genus Mus. These parent-of-origin effects suggested that imbalance in the expression of imprinted genes, which are expressed differentially, depending on their transmission through the maternal or paternal germline, and/or differential loss-of-imprinting (LOI) could underlie these opposite growth phenotypes in reciprocal mammalian hybrids. Here we report that tissue-specific LOI occurs in adult Mus hybrids. Contrary to expectations, LOI patterns were not consistent with a direct influence of altered expression levels of imprinted genes on growth. Bisulfite sequencing revealed that reactivation of maternal alleles of Peg3 and Snrpn in specific tissues was accompanied by partial demethylation at their potential imprinting control regions. We propose that abnormal reprogramming after fertilization and during preimplantation development is in part responsible for hybrid dysgenesis, for which a strong epigenetic basis has been demonstrated.  相似文献   

8.
A total genome scan and pharmacogenetic study were designed to search for genetic determinants of blood pressure (BP) as well as heart and kidney weights. Genome scanning was carried out in 266 F(2) intercrosses from Prague hypertensive hypertriglyceridemic rats for phenotypes of organ weights, baseline BP, BP after blockade of the renin-angiotensin system (RAS) by losartan, of the sympathetic nervous system (SNS) by pentolinium, and of the nitric oxide (NO) synthase by N(G)-nitro-L-arginine methyl ester. Pharmacogenetic analysis showed that, in males, BP was controlled by two loci on chromosomes 1 and 5 (Chr1, Chr5) through the SNS, and these loci showed a positive contribution for relative kidney weight (KW/BW). On the other hand, baseline BP in females was controlled by two loci on Chr3 and Chr7. The effect of these loci was not mediated by the RAS, SNS or NO system. These loci did not show any effect for KW/BW. Negatively-linked loci for KW/BW and relative heart weight (HW/BW) were identified on Chr2 in both genders. Another negatively-linked locus for KW/BW, located on Chr8 in males, affected BP through the SNS. This locus on Chr8 overlapped with a previously-reported modifier locus for polycystic kidney disease (PKD). In conclusion, this pharmacogenetic study determined two loci for BP and relative organ mass implicating sympathetic overactivity. Concordance of the identified locus for KW/BW and BP through the SNS on Chr8 with the PKD locus revealed the importance of this region for renal complications in various diseases.  相似文献   

9.
The study of the factors structuring genetic variation can help to infer the neutral and adaptive processes shaping the demographic and evolutionary trajectories of natural populations. Here, we analyse the role of isolation by distance (IBD), isolation by resistance (IBR, defined by landscape composition) and isolation by environment (IBE, estimated as habitat and elevation dissimilarity) in structuring genetic variation in 25 blue tit (Cyanistes caeruleus) populations. We typed 1385 individuals at 26 microsatellite loci classified into two groups by considering whether they are located into genomic regions that are actively (TL; 12 loci) or not (NTL; 14 loci) transcribed to RNA. Population genetic differentiation was mostly detected using the panel of NTL. Landscape genetic analyses showed a pattern of IBD for all loci and the panel of NTL, but genetic differentiation estimated at TL was only explained by IBR models considering high resistance for natural vegetation and low resistance for agricultural lands. Finally, the absence for IBE suggests a lack of divergent selection pressures associated with differences in habitat and elevation. Overall, our study shows that markers located in different genomic regions can yield contrasting inferences on landscape‐level patterns of realized gene flow in natural populations.  相似文献   

10.
Postpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the genetic loci responsible for male-mediated nonrandom mating, we performed mixed pollinations with Col and RIL pollen on Col pistils. To map the genetic loci responsible for female-mediated nonrandom mating, we performed mixed pollinations with Col and Landsberg erecta pollen on RIL pistils. With these data, we performed composite interval mapping to identify two quantitative trait loci (QTLs) that control male-mediated nonrandom mating. We detected epistatic interactions between these two loci. We also explored female- and male-mediated traits involved in seed yield in mixed pollinations. We detected three female QTLs and one male QTL involved in directing seed number per fruit. To our knowledge, the results of these experiments represent the first time the female and male components of seed yield and nonrandom mating have been separately mapped.  相似文献   

11.
A population of 1398 Canchim (CA) cattle was genotyped to assess the association of an insulin-like growth factor 1 (IGF1) gene microsatellite with phenotypic variation and estimated breeding values of pre-weaning, weaning and post-weaning growth traits. After an initial analysis, the IGF1 genotype only had a significant effect (P < 0.05) on birth weight (BW) and weaning weight adjusted to 240 days (WW240). For these two traits, direct and maternal breeding values were estimated using the restricted maximum likelihood (reml). Two analyses were carried out. In the first (Model I), all fixed effects were fitted. In the second (Model II), the fixed effect of the IGF1 genotype was omitted. The estimated genetic and phenotypic components of variance were similar for every trait in both models. For Model I, estimated direct and maternal heritabilities were 0.26 and 0.16 for BW and 0.23 and 0.14 for WW240 respectively. The genetic and phenotypic correlations between BW and WW240 were 0.38 and 0.38 (Model I) and 0.19 and 0.38 (Model II) respectively. Fifty animals were classified according to their direct and maternal breeding values for both traits. Spearman rank-order correlation between animal rankings in the two models was used to assess the effect of including the IGF1 genotype in the model. Non-significant values from this correlation were indicative of a difference in breeding value rankings between the two approaches. The IGF1 gene was found to be associated with phenotypic variation and breeding values in the early phase of growth.  相似文献   

12.
In a previous contribution, we implemented a finite locus model (FLM) for estimating additive and dominance genetic variances via a Bayesian method and a single-site Gibbs sampler. We observed a dependency of dominance variance estimates on locus number in the analysis FLM. Here, we extended the FLM to include two-locus epistasis, and implemented the analysis with two genotype samplers (Gibbs and descent graph) and three different priors for genetic effects (uniform and variable across loci, uniform and constant across loci, and normal). Phenotypic data were simulated for two pedigrees with 6300 and 12,300 individuals in closed populations, using several different, non-additive genetic models. Replications of these data were analysed with FLMs differing in the number of loci. Simulation results indicate that the dependency of non-additive genetic variance estimates on locus number persisted in all implementation strategies we investigated. However, this dependency was considerably diminished with normal priors for genetic effects as compared with uniform priors (constant or variable across loci). Descent graph sampling of genotypes modestly improved variance components estimation compared with Gibbs sampling. Moreover, a larger pedigree produced considerably better variance components estimation, suggesting this dependency might originate from data insufficiency. As the FLM represents an appealing alternative to the infinitesimal model for genetic parameter estimation and for inclusion of polygenic background variation in QTL mapping analyses, further improvements are warranted and might be achieved via improvement of the sampler or treatment of the number of loci as an unknown.  相似文献   

13.
Piglet mortality from farrowing to weaning is a major concern, especially in outdoor organic production systems. This issue might impair animal welfare and generate economic losses for the farmer. In particular, it is difficult to apply management tools that are commonly used for indoor pig production systems to organic or outdoor production systems. Genetics and breeding approaches might be used to improve piglet survival. However, knowledge remains limited on the genetic background underlying survival traits in organic pigs that are born and reared outdoors. Here, we investigated the mortality of piglets from farrowing to weaning in an outdoor organic pig population and suggested genetic strategies to reduce piglet mortality in this production system. The experiment included mortality records of piglets from farrowing to weaning (around 69 days of age). Pedigree-based threshold models were used to analyse the mortality traits of piglets at 0–3 days of age, 4–11 days, and 12 days to weaning. Stillborn piglets were included in the group of piglets that died at 0–3 days of age. We found that the mortality rate from farrowing to weaning was, on average, 19.2%. However, most piglet deaths (79.1%) occurred at 0–11 days of age. As the age of piglets increased, the direct heritability of piglet mortality rose from 0 to 0.04, whereas maternal heritability decreased from 0.03 to a non-significant value. Piglets with higher BW had a lower mortality rate. However, the genetic correlations between maternal effects on piglet mortality and piglet BW were not significant; thus, selection for piglets with higher BW at around 10 days of age, through improving maternal genetics, would not reduce piglet mortality. Piglet mortality increased from sows with increasing number of parities. Crossbreeding also reduced piglet mortality. In conclusion, selection focusing on sow genotype, the use of younger sows, and crossbreeding could contribute to maintain piglet mortality at lower levels in outdoor organic pig production systems.  相似文献   

14.
利用分子标记预测杂交水稻产量及其构成因素   总被引:24,自引:0,他引:24  
利用AFLP、RAPD、SSR技术分析了10个恢复系和5个不育系的931个基因座,利用15个亲本配制了50个杂交组合,在泸州和重庆2个环境下同时种植,考察了产量及其构成因素,从931个基因座中筛选出了与之相关的阳性座位、增效座位、减效座位、非环境型座位,并分析了它们与杂种产量及其构成因素间的关系。结果表明,利用所有座位计算的遗传差异与产量及其构成因素的相关性,绝大多数性状未达显著水平,不能直接用于预测产量及其构成因素。阳性座位在一定程度上可以提高相关系数,因性状不同而存在差异,在多数性状上预测产量及其构成因素还有一定难度;增效座位和减效座位可以大幅度提高相关系数,在不同的环境下也表现一致,可以用来预测产量及其构成因素;非环境型座位计算的相关系数也较高,但低于增效座位和减效座位,说明环境对产量及其构成因素有较大的影响。  相似文献   

15.
Variation in sexual dimorphism (SD) is particularly marked in meat-type chickens. This paper investigates the genetic basis of SD in an important economic trait, i.e. body weight (BW) at 35 days of age, in broilers by applying quantitative genetic analysis. A large dataset comprising 203,323 BW records of a commercial line of broiler chicken was used. First, a bivariate approach was employed treating BW as a sex-specific trait. During this approach, seven bivariate models were applied and variances due to direct additive genetic, maternal genetic and maternal environmental effects were estimated via the restricted maximum likelihood method. The best-fitting model included direct additive genetic, maternal genetic and maternal environmental effects with a direct–maternal genetic covariance. Differences between male and female direct heritabilities were non-significant (0.28 vs. 0.29 for males and females, respectively), implying no need for sex-specific selection strategies. The direct–maternal genetic correlation was more strongly negative in males than in females (?0.72 vs. ?0.56), implying a more profound antagonism between direct additive and maternal genetic effects in this particular gender. The direct genetic correlation of BW between the two sexes was as high as 0.91, i.e. only slightly lower than unity. Second, variance components and genetic parameters of two measures of SD, i.e. the weight difference (Δ) and the weight ratio (R), between the genders were estimated. Direct heritabilities for both measures were significantly different to 0 but of low magnitude (0.04). Apart from the additive–maternal covariance, no other random effects were found to be of importance for Δ and R. The results of the present study suggest that only minimal selection responses due to the selection of Δ and/or R and a small capacity for amplifying or reducing the BW differences between the sexes are to be expected in this specific population. Furthermore, selection pressure on BW is expected to amplify SD.  相似文献   

16.
The value of quantitative trait loci (QTL) is dependant on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependant on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTLU Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.  相似文献   

17.

Background

Birth weight (BW) predicts many health outcomes, but the relative contributions of genes and environmental factors to BW remain uncertain. Some studies report stronger mother-offspring than father-offspring BW correlations, with attenuated father-offspring BW correlations when the mother is stunted. These findings have been interpreted as evidence that maternal genetic or environmental factors play an important role in determining birth size, with small maternal size constraining paternal genetic contributions to offspring BW. Here we evaluate mother-offspring and father-offspring birth weight (BW) associations and evaluate whether maternal stunting constrains genetic contributions to offspring birth size.

Methods/Principal Findings

Data include BW of offspring (n = 1,101) born to female members (n = 382) and spouses of male members (n = 275) of a birth cohort (born 1983–84) in Metropolitan Cebu, Philippines. Regression was used to relate parental and offspring BW adjusting for confounders. Resampling testing was used to evaluate whether false paternity could explain any evidence for excess matrilineal inheritance. In a pooled model adjusting for maternal height and confounders, parental BW was a borderline-significantly stronger predictor of offspring BW in mothers compared to fathers (sex of parent interaction p = 0.068). In separate multivariate models, each kg in mother’s and father’s BW predicted a 271±53 g (p<0.00001) and 132±55 g (p = 0.017) increase in offspring BW, respectively. Resampling statistics suggested that false paternity rates of >25% and likely 50% would be needed to explain these differences. There was no interaction between maternal stature and maternal BW (interaction p = 0.520) or paternal BW (p = 0.545).

Conclusions/Significance

Each kg change in mother’s BW predicted twice the change in offspring BW as predicted by a change in father’s BW, consistent with an intergenerational maternal effect on offspring BW. Evidence for excess matrilineal BW heritability at all levels of maternal stature points to indirect genetic, mitochondrial, or epigenetic maternal contributions to offspring fetal growth.  相似文献   

18.
Immune defence is hypothesized to be a trait that bears significant fitness costs as well as benefits in that mounting a defence depreciates the value of other life‐history traits. Thus the cost of mounting an immune response could affect the evolution of both the immune system and correlated life history traits. In this study we examined, by means of a diallel cross of four inbred lines, the genetic basis of two measures of immune function, metabolic rate and several traits in the sand cricket, Gryllus firmus. We specifically addressed the following questions: (1) is immune function determined primarily by genetic constitution or correlations with phenotypic traits that could reduce the effectiveness of the immune response; (2) do the two measures of immune function covary; (3) What are the contributions of additive, nonadditive and maternal effects to the immune function? As estimates of immune function, we used lytic activity and encapsulation rate. We found that inbred crickets were smaller than individuals from the crossed lines and took longer to develop. However, inbred lines did not differ from the crossed lines in immune function nor metabolic rates, suggesting that increased homozygosity has little or no effect on these traits in G. firmus. We found that both immune parameters showed significant genetic variation but no consistent relationships with the other phenotypic traits (metabolic rate, head width, body mass, development time and activity). There was significant additive genetic variation only in encapsulation rate, but, with the exception of the activity measure, significant nonadditive and reciprocal variances were found in all traits. Metabolic rate of crickets was heritable, but there was neither phenotypic nor genetic association between metabolic rate and the two parameters of immune function. Further, there was no correlation between these two measures. Females showed a higher encapsulation response than males, but there was no sex differences in lytic activity. Our study indicates that genetic variation in immune parameters can be a very significant contributor to phenotypic variation in immune function.  相似文献   

19.
Genetic control of polyamine-dependent susceptibility to skin tumorigenesis   总被引:3,自引:0,他引:3  
Megosh LC  Hu J  George K  O'Brien TG 《Genomics》2002,79(4):505-512
Overexpression of an ornithine decarboxylase (ODC) transgene greatly increases the susceptibility of mouse skin to carcinogen-induced tumor development. Like many phenotypes in transgenic models, this enhanced susceptibility phenotype is strongly influenced by genetic background. We have mapped tumor-modifier genes in intraspecific crosses between transgenic K6/ODC mice on a susceptible strain background (C57Bl/6J), a moderately resistant background (FVB), or a highly resistant background (C3H/HeJ). We identified several quantitative trait loci that influenced either tumor multiplicity or predisposition to the development of squamous cell carcinoma, but not both phenotypes. Because we did not use a tumor-promotion protocol to induce tumors, most of the quantitative trait loci mapped in this study are distinct from skin tumor-susceptibility loci identified previously. The use of a combined transgenic-standard strain approach to genetic analysis has resulted in detection of previously unknown genetic loci affecting skin tumor susceptibility.  相似文献   

20.
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially‐explicit, individual‐based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation‐by‐distance, isolation‐by‐barrier, and isolation‐by‐landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non‐equilibrium conditions after introduction of isolation‐by‐landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号