首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2020年   1篇
  2016年   1篇
  2008年   1篇
  2007年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Wen  Guang  Bates  T. E.  Inanaga  S.  Voroney  R. P.  Hamamura  K.  Curtin  D. 《Plant and Soil》2002,246(2):241-248
Organic wastes such as sewage sludges contain copper (Cu). Increased attention to environmental protection requires that wastes be treated with pathogen-eliminating procedures before application to farmland. It is not clear, however, if such procedures affect the plant availability of Cu in the wastes. This 2-year field research investigated the effect of irradiation and composting on Cu availability in sludges and manure using a yield control approach. Four organic wastes [digested and dewatered (DSS), digested and irradiated (DISS), composted (DICSS) sewage sludges and composted livestock manure (CLM)] were applied at four rates (10, 20, 30 and 40 t solid ha–1 year–1) with supplemented N and K fertilizers. A control treatment (CT) received N and K fertilizers only. Beans, lettuce and petunias were grown in first year and lettuce were harvested twice in second year. Beans appeared to have a strong ability to absorb Cu compared with the other test crops. In general, crop Cu concentration responses to Cu applied in DSS and DISS were well described by quadratic equations. Tested by a paired t-test, Cu concentration in bean pods was higher in DISS than in DSS treatment, indicating that irradiation increased phytoavailability of Cu. However, the parabolic response of crop Cu to Cu applied in DISS, suggesting that the increases were confined to the lower rates of DISS. Copper applied in DICSS did not increase Cu concentration in any of the test crops. At a given level of applied Cu, crop Cu tended to be lower in DICSS than in DSS or DISS treatment. Sludge composting depressed phytoavailability of Cu. Copper concentration in CLM was much lower than in sludges and sludge composts, but application of CLM increased Cu concentration in bean pods. The pattens of Cu concentration in the two cuts of lettuce in 1991 to Cu applied in CLM were similar, where low rates of CLM application slightly reduced Cu concentration, then the Cu concentration increased with increased rates. The dynamics of available Cu supply were different in the sludge composts and manure composts.  相似文献   
2.
Wen  Guang  Bates  T. E.  Voroney  R. P.  Yamamoto  T.  Chikushi  J.  Curtin  D. 《Plant and Soil》2002,246(2):231-240
The threat of spreading diseases is a serious concern when organic wastes are applied to farmland. Irradiation and composting are effective methods to reduce pathogens. Field experiments were conducted to assess the influence of these pathogen-eliminating methods on plant availability of Zn in the wastes. Four organic wastes: digested and dewatered (DSS), irradiated (DISS), composted (DICSS) sewage sludge and composted livestock manure (CLM) were applied during two growing seasons at 10, 20, 30, and 40 t solids ha–1 year–1. Available N and K in the wastes were estimated and N and K fertilizers were added to the soil to equalize available N and K supply among treatments to avoid dilution of crop Zn concentration. A control treatment (CT) received fertilizers but no waste. Lettuce, snap beans and petunias were grown in 1990, and two cuts of lettuce were harvested in 1991. The influence of waste Zn application on crop Zn concentration was studied within approximately equal crop yields. Crop Zn concentration increased in all crops treated with DSS or DISS, and often reached a maximum at the 30 t ha–1 rate of application, then slightly decreased at 40 t ha–1. The response of crop Zn concentration to the amount of Zn applied in the wastes was best described by quadratic equations. Waste application also significantly increased soil Zn availability index, which was a function of DTPA (diethylenetriamine pentaacetic acid)-extractable soil Zn and soil pH. The index was highly correlated with crop Zn concentration. Although Zn concentration in DICSS was similar to those in DSS and DISS, Zn applied in DICSS did not increase crop Zn concentration or soil availability index. Composting reduced the availability of Zn. The similar concentrations of Zn in DSS and DISS in both years allowed the use of a paired t-test to determine the differences in crop Zn concentration caused by application of DSS and DISS. Zinc applied in DISS produced a higher Zn concentration in bean pods than Zn applied in DSS (t > T 0.05 at P < 0.02, df = 15), indicating that irradiation increased phytoavailability of Zn in the sludge. However, no similar effect was found in Zn concentrations in the two cuts of lettuce in 1991 or in soil Zn availability index.  相似文献   
3.
Plant and Soil - There is a trend of increasing woody biomass in tropical savannas. Here we ask what effect this increase may have on soil carbon pools and fluxes. Using a field experiment we...  相似文献   
4.
Wastewaters from farm and composting operations are often rich in select nutrients that potentially can be reutilized in crop production. Liners of silverleaf dogwood (Cornus alba L. 'Argenteo-marginata'), common ninebark [Physocarpus opulifolius (L.) Maxim.], and Anthony Waterer spirea (Spiraeaxbumalda Burvénich 'Anthony Waterer') were grown in 6L containers filled with a bark-based commercial mix. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: (1) a stock (control) solution with complete macro- and micro-nutrients, electrical conductivity (EC) 2.2 dS m(-1); (2) wastewater from a mushroom farm; and (3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense and recirculate nutrients based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17-5-12 (17N-2P-10K) plus micro-nutrients topdressed at a rate of 39 g/plant, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth with the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. Throughout the study, the EC measured in wastewater-derived nutrient solutions, and also in the container substrate, were similar or close to those of the control treatment, although there were small to large differences among individual major nutrients. There was no sign of nutrient deficiency or toxicity symptoms to the plants. Small to moderate excesses in concentrations of SO(4), Na, and/or Cl were physiologically tolerable to the species.  相似文献   
5.
Natural exchanges of carbon (C) between the atmosphere, the oceans, and terrestrial ecosystems are currently being modified through human activities as a result of fossil fuel burning and the conversion of tropical forests to agricultural land. These activities have led to a steady increase of atmospheric carbon dioxide (CO2) over the last two Centuries. The goal of this study was to determine the potential of temperate agroforestry systems to sequester C in soil. Therefore, changes in the soil organic C (SOC) and nitrogen (N) pools were quantified and the δ13C and δ15N stable isotope technique was applied to assess soil C and N dynamics in a 13-year old hybrid poplar alley cropping system in Southern Canada. Results from this study showed that after 13 years of alley cropping the SOC and N pools did not differ significantly (p = 0.01) with distance from the tree row, although a trend of a larger SOC and N pool near the tree row could be observed. Soil organic C after 13 years of alley cropping, was 19 mg C g−1 compared to 11 mg C g−1 upon initiation of agroforestry. Soil organic C and N were not evenly distributed throughout the plow layer. The largest C and N pool occurred in the top 20 cm, which is due to the accumulation of organic material in the upper horizons as a result of no-till cultivation. The entire soil, to a 40 cm depth, showed a δ13C shift to that of C3 residue. This shift reflects the greater input of residues from C3 plants such as that derived from beans, wheat, and hybrid poplar leaf litterfall. The proportion of C derived from a C3 source ranged from 64 to 69% to a 40 cm depth. The soil δ15N signature of this study is similar to that of mineral soil, and reflect values characteristic of N mineralization processes. However, the entire soil shows a positive shift in δ15N as a result of historical additions of manure and current use of mineral fertilizers, and ongoing processes of denitrification and nitrate leaching, which leads to an enrichment of the soil.  相似文献   
6.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   
7.
For many soils of the tropics, inputs of organic materials are essential to sustain soil fertility and crop production. Research in the quality of organic inputs, a key factor controlling rates of decomposition and nutrient release, continues to guide selection and use of organic materials as nutrient sources. The relationship between decomposition patterns and the quality parameters of the fresh leaves of six agroforestry species: Sesbania sesban, Croton megalocarpus, Calliandra calothyrsus, Tithonia diversifolia, Lantana camara, and Senna spectabilis, was investigated in a litterbag study over a period of 77 days in the highlands of western Kenya. The litterbags were buried 1 cm below the soil surface and covered with soil of ca 1 cm thickness. Percent leaf mass and total N and P that remained with time strongly correlated with total P and C/P ratio (R2= 0.60‐0.90) during the first 35 days of study; but afterwards, correlation was stronger with the initial soluble polyphenolics (Pp)/P ratio (R2= 0.69‐0.92) than with total P and C/P ratio. Loss of leaf mass and release of N and P followed the exponential function, yt= y0* e‐kt, from which the specific decay rate constants (k) were calculated for loss of leaf mass (kB) and release of N (kN) and P (Kp). Among the plant species, the k values were lowest in Calliandra with kB= 0.012/d, kN= 0.017/d and kp= 0.044/d. Lantana had the highest K values with kg= 0.067/d and kp= 0.119/d, but the highest kN value of 0.109/d occurred in Tithonia. The kB values for all organic materials were lower than their corresponding kN and kp values, suggesting that leaching of N and P from litters may have augmented the microbial mineralization of N and P. There was a strong correlation between the kB, kN, and kp values and total P (r = 0.82‐0.96; P 0.01), but not total N, lignin (LIG), or Pp. Rates of N and P release followed the general trend: Tithonia > Senna > Lantana > Sesbania > Croton > Calliandra. The results indicated that, among the quality parameters studied, total P is the most important factor controlling rate of decomposition and N and P release from organic inputs in the area of study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号