首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2002年   1篇
排序方式: 共有28条查询结果,搜索用时 406 毫秒
1.
The paper describes the bio efficacy of a protease inhibitor; isolated from Allium sativumgarlic’ (ASPI); against Aedes aegypti mosquito, a well-known transmitter of dengue and Chikungunya. The purification of protease inhibitor from Allium sativumgarlic’ (ASPI) was carried out by ammonium sulfate precipitation followed by Fast Protein Liquid Chromatography using akta DEAE-Cellulose column. The protein fraction demonstrating trypsin inhibitory activity was further evaluated for its insecticidal activity using gut protease inhibition assay and larvicidal assay. ASPI is an inhibitor of porcine trypsin (IC50 of 650.726?μg/mL) and has molecular weight of ~15?kDa determined by SDS PAGE similar to other inhibitors of the Kunitz-type family (14–26?kDa). ASPI demonstrated 50% reduced activity of Ae. aegypti midgut proteases and showed a dose-dependent acute toxicity on Ae. aegypti 3rd instars exhibiting LC50 value of ~50.827?μg/mL. After ten days of larval exposure ASPI resulted in a 24-h delay of larval development and ~72% mortality at 61.5?μg/mL. These results suggest that ASPI may serve as potent insecticidal agent and hence opens a new gateway in the field of phyto-remediation.  相似文献   
2.
Biochemical Genetics - There is a strong genetic predisposition to cardiovascular disease (CVD). Loss-of-function variants of the angiopoietin-like 3 (ANGPTL3) gene have been reported to be...  相似文献   
3.
14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells, which play an important role in a multitude of signaling pathways. 14-3-3 proteins bind to phosphoserine/phosphothreonine motifs in a sequence-specific manner. More than 200 14-3-3 binding partners have been found that are involved in cell cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. A phosphorylation-independent interaction has been reported to occur between 14-3-3 and a C-terminal domain within exoenzyme S (ExoS), a bacterial ADP-ribosyltransferase toxin from Pseudomonas aeruginosa. In this study, we have investigated the effect of amino acid mutations in this C-terminal domain of ExoS on ADP-ribosyltransferase activity and the 14-3-3 interaction. Our results suggest that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity, as cytotoxicity analysis reveals that substitution of this leucine significantly weakens the ability of ExoS to mediate cell death. Leucine-428 is also required for the ability of ExoS to modify the eukaryotic endogenous target Ras. Finally, single amino acid substitutions of positions 426-428 reduce the interaction potential of 14-3-3 with ExoS in vitro.  相似文献   
4.
Background:MicroRNA expression signature and reactive oxygen species (ROS) production have been associated with the development of cardiovascular diseases (CVDs). This study aimed to evaluate oxidative stress, inflammation, apoptosis, and the expression of miRNA-208a and miRNA-1 in cardiovascular patients.Methods:The study population included four types of patients (acute coronary syndromes (ACS), myocardial infarction (MI), arrhythmia, and heart failure (HF)), with 10 people in each group, as well as a control group. Quantitative real-time PCR was performed to measure mir-208 and miR-1 expression, the mRNAs of inflammatory mediators (TNFα, iNOS/eNOS), and apoptotic factors (Bax and Bcl2). XOX, MDA, and antioxidant enzymes (CAT, SOD, and GPx) were measured by ZellBio GmbH kits by an ELISA Reader.Results:The results showed significant decreases in the activity of antioxidant enzymes (CAT, SOD, and Gpx) and a significant increase in the activity of the MDA and XOX in cardiovascular patients. Significant increases in IL-10, iNos, iNOS / eNOS, and TNF-α in cardiovascular patients were also observed. Also, a significant increase in the expression of miR-208 (HF> arrhythmia> ACS> MI) and a significant decrease in the expression of miR-1 (ACS> arrhythmia> HF> MI) were found in all four groups in cardiovascular patients.Conclusion:The results showed increases in oxidative stress, inflammation, apoptotic factors, and in the expression of miR-208a in a variety of cardiovascular patients (ACS, MI, arrhythmia, and HF). It is suggested that future studies determine the relationships that miR-1, miR-208, and oxidative stress indices have with inflammation and apoptosis.Key Words: Apoptosis, Cardiovascular diseases, Inflammation, microRNA-208a, microRNA-1, Oxidative stress  相似文献   
5.
ABSTRACT

Exo– and endo–adsorption of ethylene oxide (EO) on pristine (9,0) (zigzag) carbon nanotube (CNT) and its doped forms with silicon (Si–CNT), aluminum (Al–CNT) and boron (B–CNT) were investigated using density functional theory (DFT) at M06–2X/6–311++G** level. The natural bond orbital (NBO) and the quantum theory of atoms in molecules (QTAIM) analyses were also performed by using the same level of theory. The effect of the doping on sensing behaviour of the CNT toward EO molecule was investigated through intermolecular interactions studies by calculation of total and partial density of states (DOS, PDOS). The enhanced sensitivity of doped–CNTs towards EO molecule associated with adsorption energies (Eads) and the changes in geometric and electronic structures was examined and the global chemical reactivity parameters were calculated and comprehensively analysed. The thermodynamic property changes were calculated and compared. The results indicated that the EO adsorption on the pristine and doped CNTs was an exothermic spontaneous process. Moreover, based on the calculated Eg change (ΔEg) and Eads values, Al–CNT with superior sensitivity for sensing of EO molecule, indicates promising perspectives for its use in fabrication of new EO gas–sensing devices.  相似文献   
6.
Klotho (KL) gene has been accepted as an "aging suppressor" gene that encodes a single transmembrane protein in human known as Klotho which is commonly expressed in renal tubes. The interruption in the secretion of Klotho protein expedites aging whereas its high expression extends lifespan. The family of Klotho proteins has been reported to act as distinct receptors for endocrine fibroblast growth factors (FGFs), which manage multifarious metabolic processes. Further, the secreted Klotho is a hormonal factor that takes part in the ion channel organization. Numerous studies determined that this protein affects the function of a number of important signaling pathways, which may present an impact in tumorigenesis via the coordination of receptors located on them. This review article focuses on the effects of microRNAs on the performance of Klotho and how the interplay between Klotho and certain pathways like insulin-like growth factor, FGF, Wnt, and transforming growth factor β contribute to the biogenesis of cancer. The present study is also pointed at defining the molecular mechanisms of these interactions.  相似文献   
7.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   
8.
9.

Human chronic myelogenous leukemia (CML) is a stem cell driven hematological malignancy which shows resistance to existing therapeutics. This property of CML accentuates the necessity to develop alternative anti-CML therapeutic agents. Herein, we have evaluated the anticancer activity of a novel anticancer peptide, Brevinin-2R and its two analogues, Brevinin-2R-C and Brevinin-2R-D regarding their inhibitory activity against K562 cells. Various cell-based analyses have been conducted to analyze the effects of these peptides and their mechanism of action. Hematotoxicity assay was performed to determine their hemolytic activities. MTT and neutral red uptake assays were conducted to examine anti-proliferative effects, propidium iodide (PI) staining to monitor the DNA content in different phases of cell cycle and Annexin V/PI staining to detect the apoptosis induction for the peptides. Our findings indicated that these peptides are capable of diminishing the cell growth and inducing apoptosis and cell cycle arrest. Brevinin-2R and its two analogues inhibited cell proliferation through strong cell cycle arrest in G2/M phase leading to apoptosis induction. The cytotoxicity of Brevinin-2R was higher than that of its two derivatives. These observations have provided new insights into the therapeutic activity of Brevinin-2R and its two analogues and suggest that these peptides have the potential to act as anticancer agents in treatment of K562. Further in vivo investigations on the therapeutic potential of Brevinin-2R and its two analogues are required to get a better grasp of their mechanism of action.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号