首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 518 毫秒
1
1.
Sen S  Banerjee R 《Biochemistry》2007,46(13):4110-4116
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to yield cystathionine and is the single most common locus of mutations associated with homocystinuria. In this study, we have examined the kinetic consequences of a pair of linked patient mutations, P78R/K102N, that are housed in the catalytic core of the protein and compared it to the effects of the corresponding single mutations. The P78R mutation affords purification of a mixture of higher order oligomers, P78R-I, which resembles the mixed quaternary state associated with wild-type enzyme. However, unlike wild-type enzyme, P78R-I converts over time to P78R-II, which exists predominantly as a full-length dimer. The specific activities of the K102N, P78R-I, and P78R-II mutants in the absence of AdoMet are approximately 3-, 9-, and 3-fold lower than of wild-type enzyme and are stimulated 2.9-, 2.5-, and 1.4-fold respectively by AdoMet. However, when linked, the specific activity of the resulting double mutant is comparable to that of wild-type enzyme but it is unresponsive to AdoMet, revealing that interactions between the two sites modulate the phenotype of the enzyme. Steady-state kinetic analysis for the double mutant reveals a sigmoidal dependence on homocysteine that is not observed with wild-type enzyme, which is ascribed to the mutation at the K102 locus and indicates changes in subunit interactions. Hydrogen-deuterium mass spectrometric analysis reveals that, even in the absence of AdoMet, the double mutant is locked in an activated conformation that is observed for wild-type enzyme in the presence of AdoMet, providing a structural rationale for loss of this allosteric regulation. To our knowledge, this is the first example of mutations in the catalytic core of cystathionine beta-synthase that result in failure of AdoMet-dependent regulation. Furthermore, analysis of individual single mutations has permitted, for the first time, partial kinetic characterization of a full-length dimeric form of human cystathionine beta-synthase.  相似文献   
2.
Sen S  Yu J  Yamanishi M  Schellhorn D  Banerjee R 《Biochemistry》2005,44(43):14210-14216
Cystathionine beta-synthase plays a key role in the intracellular disposal of homocysteine and is the single most common locus of mutations associated with homocystinuria. Elevated levels of homocysteine are correlated with heart disease, Alzheimer's and Parkinson's diseases, and neural tube defects. Cystathionine beta-synthase is modular and subjected to complex regulation, but insights into the structural basis of this regulation are lacking. We have employed hydrogen exchange mass spectrometry to map peptides whose motions are correlated with transmission of intrasteric inhibition and allosteric activation. The mass spectrometric data provide an excellent correlation between kinetically and conformationally distinguishable states of the enzyme. We also demonstrate that a pathogenic regulatory domain mutant, D444N, is conformationally locked in one of two states sampled by the wild type enzyme. Our hydrogen exchange data identify surfaces that are potentially involved in the juxtaposition of the regulatory and catalytic domains and form the basis of a docked structural model for the full-length enzyme.  相似文献   
3.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   
4.

Phosphorus (P) is an essential macronutrient required for the survival and reproduction of all living organisms. Its inorganic form (Pi) is taken up by the roots to support plant growth and development, and its availability directly determines agricultural productivity. The primary source of P replenishment in agriculture is chemical phosphate (Pi) fertilizers. While application of Pi-fertilizers to croplands ensures high yield agriculture, its intensive use leads to several environmental implications, including loss of soil fertility and pollution of water bodies with runoff fertilizer. Global non-renewable P-reserves are finite and would last for only a few hundred years. Therefore, a holistic approach is needed to combine Pi-use efficient germplasm with the targeted fertilization, agronomically superior fertilizer formulations for better P-management. The latest technologies to reclaim Pi from alternative sources need to be explored. In the present review, we first outline the challenges and environmental consequences of Pi-intensive fertilization, followed by plants' response and adaptive strategies to Pi starvation. Next, we discuss the role of microbes and Pi-nanofertilizer to plant Pi nutrition. Finally, a few cutting-edge technologies and innovative solutions available for reclaiming Pi from waste are argued.

  相似文献   
5.
The coancestry coefficient, also known as the population structure parameter, is of great interest in population genetics. It can be thought of as the intraclass correlation of pairs of alleles within populations and it can serve as a measure of genetic distance between populations. For a general class of evolutionary models it determines the distribution of allele frequencies among populations. Under more restrictive models it can be regarded as the probability of identity by descent of any pair of alleles at a locus within a random mating population. In this paper we review estimation procedures that use the method of moments or are maximum likelihood under the assumption of normally distributed allele frequencies. We then consider the problem of testing hypotheses about this parameter. In addition to parametric and non-parametric bootstrap tests we present an asymptotically-distributed chi-square test. This test reduces to the contingency-table test for equal sample sizes across populations. Our new test appears to be more powerful than previous tests, especially for loci with multiple alleles. We apply our methods to HapMap SNP data to confirm that the coancestry coefficient for humans is strictly positive.  相似文献   
6.
Human cystathionine β-synthase plays a key role in maintaining low intracellular levels of homocysteine and is unique in being a pyridoxal phosphate-dependent enzyme that is a hemeprotein. It catalyzes the β-replacement of serine and homocysteine to generate the condensation product, cystathionine. While the structure of a truncated catalytic core of the protein has been determined by crystallography, a model for the full-length enzyme has been developed guided by hydrogen–deuterium exchange mass spectrometric and docking studies. In this review, we have utilized the available structural models for human cystathionine β-synthase to conduct a structure–function analysis of a select group of pathogenic mutations described in patients with hereditary hyperhomocysteinemia.  相似文献   
7.
Journal of Plant Growth Regulation - Liverworts are influenced by several ecological factors, such as photoperiod, temperature, precipitation, and nutrient availability. These factors vary in...  相似文献   
8.
We have previously demonstrated that relatively high concentrations of NO [Nitric Oxide] as produced by activated macrophages induced apoptosis in the human breast cancer cell line, MDA-MB-468. More recently, we also demonstrated the importance of endogenous H2O2 in the regulation of growth in human breast cancer cells. In the present study we assessed the interplay between exogenously administered NO and the endogenously produced reactive oxygen species [ROS] in human breast cancer cells and evaluated the mechanism[s] in the induction of apoptosis. To this end we identified a novel mechanism by which NO down regulated endogenous hydrogen peroxide [H2O2] formation via the down-regulation of superoxide [O2 .−] and the activation of catalase. We further demonstrated the existence of a feed forward mechanistic loop involving protein phosphatase 2A [PP2A] and its downstream substrate FOXO1 in the induction of apoptosis and the synthesis of catalase. We utilized gene silencing of PP2A, FOXO1 and catalase to assess their relative importance and key roles in NO mediated apoptosis. This study provides the potential for a therapeutic approach in treating breast cancer by targeted delivery of NO where NO donors and activators of downstream players could initiate a self sustaining apoptotic cascade in breast cancer cells.  相似文献   
9.
Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号