首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.  相似文献   

2.
The availability of orthophosphate (Pi) is a key determinant of crop productivity because its accessibility to plants is poor due to its conversion to unavailable forms. Weed's competition for this essential macronutrient further reduces its bio‐availability. To compensate for the low Pi use efficiency and address the weed hazard, excess Pi fertilizers and herbicides are routinely applied, resulting in increased production costs, soil degradation and eutrophication. These outcomes necessitate the identification of a suitable alternate technology that can address the problems associated with the overuse of Pi‐based fertilizers and herbicides in agriculture. The present review focuses on phosphite (Phi) as a novel molecule for its utility as a fertilizer, herbicide, biostimulant and biocide in modern agriculture. The use of Phi‐based fertilization will help to reduce the consumption of Pi fertilizers and facilitate weed and pathogen control using the same molecule, thereby providing significant advantages over current orthophosphate‐based fertilization.  相似文献   

3.
磷是植物生长发育所必需的大量营养元素之一。土壤中存在大量的正磷酸盐 (Pi),但由于土壤化学和微生物转化使得土壤可利用磷的浓度并不高。土壤缺磷以及杂草的抗除草剂能力已成为当前农业可持续发展的重要限制因素,所以提高植物对土壤磷的吸收利用能力或寻求可替代正磷酸盐的磷肥以及开发新型杂草控制系统已成为亟待解决的问题。自然界中亚磷酸盐 (Phi) 是含量仅次于正磷酸盐的磷源,但仅在某些细菌中能被专一性的亚磷酸盐脱氢酶 (PTDH) 氧化利用,对植物的生长发育则具有抑制作用。利用这一特性,将从土壤宏基因组中直接扩增到的假单胞菌PTDH基因PsPtx通过农杆菌侵染法转入烟草中,并通过RT-PCR、垂直板幼苗生长、显性标记和生长竞争实验分析PsPtx转基因烟草的基因表达以及在Phi胁迫条件下的特性。结果显示,PsPtx在其转基因植株的根茎叶组织中都有几乎相同水平的表达;PsPtx转基因烟草不但能解除Phi对植物的毒害作用,并将它氧化成可用的Pi作为生长发育所需的磷源,而且在Phi胁迫条件下较野生型烟草有相当明显的生长竞争优势;另外PsPtx还具备成为植物遗传转化显性选择标记的优良特质。因此,PsPtx基因编码的亚磷酸盐脱氢酶可用于开发一种基于亚磷酸盐为磷肥和除草剂的植物磷利用和杂草控制系统,为当前农作物转基因研究存在的一些重大问题提供一个有效解决方案。  相似文献   

4.

The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3). A significant improvement was observed in soil organic matter (14.9%), nitrate nitrogen (106.7%), total phosphorus (23.9%), available phosphorus (26.2%), straw yield (44.8%), and grain yield (54.7%) with BMP2 treatment as compared to CON. The study concludes that integrating chemical and organic fertilizers with water-saving irrigation (BMP2) is a good approach to increasing corn productivity, ensuring water safety and improving soil health. The limitations of the current study include the identification of fertilizer type and its optimum dose, irrigation water type, and geographical position.

  相似文献   

5.
Purpose

Organic agriculture (OA) has gained widespread popularity due to its view as a more sustainable method of farming. Yet OA and conventional agriculture (CA) can be found to have similar or varying environmental performance using tools such as life cycle assessment (LCA). However, the current state of LCA does not accurately reflect the effects of OA; thus the aim of the present study was to identify gaps in the inventory stage and suggest improvements.

Methods

This article presents for the first time a critical analysis of the life cycle inventory (LCI) of state-of-the-art organic crop LCIs from current and recommended LCA databases ecoinvent and AGRIBALYSE®. The effects of these limitations on LCA results were analyzed and detailed ways to improve upon them were proposed.

Results and discussion

Through this analysis, unrepresentative plant protection product (PPP) manufacturing and organic fertilizer treatment inventories were found to be the main limitations in background processes, due to either the lack of available usage statistics, exclusion from the study, or use of unrepresentative proxies. Many organic crop LCIs used synthetic pesticide or mineral fertilizer proxies, which may indirectly contain OA prohibited chemicals. The effect of using these proxies can contribute between 4–78% to resource and energy-related impact categories. In a foreground analysis, the fertilizer and PPP emission models utilized by ecoinvent and AGRIBALYSE® were not well adapted to organic-authorized inputs and used simplified modeling assumptions. These critical aspects can be transferred to respective LCAs that use this data, potentially yielding unrepresentative results for relevant categories. To improve accuracy and to contribute novel data to the scientific community, new manufacturing LCIs were created for a few of the missing PPPs, as well as recommendations for fertilizer treatment LCIs and more precise emission models for PPPs and fertilizers.

Conclusions

The findings in the present article add much needed transparency regarding the limitations of available OA LCIs, offers guidance on how to make OA LCIs more representative, allow for more accurate comparisons between conventional and OA, and help practitioners to better adapt LCA methodology to OA systems.

  相似文献   

6.
Algae are capable of accumulating nutrients from aqueous waste, which makes them a potential fertilizer. The ability of the fast growing Chlorella vulgaris strain IPPAS C1 to accumulate phosphorus (P) was probed in V-shaped plastic foil photobioreactors. The P uptake was 0.13–0.53 g(P)·m?2·day?1 when the algal culture densities were kept between 0.1 and 1.0 g(DW)·L?1 in a typical summer irradiance of Central Europe. The algal biomass can be effectively utilized for soil fertilization only if the algal cells release nutrients into the soil in a form that would be available to roots and at a rate sufficient to support plant growth. To examine this, we compared the growth of wheat, Triticum aestivum L., in two nutrient-deficient substrates: “Null Erde” and sand, with and without fertilization by wet and spray-dried algae. Plants grown in the two nutrient-deficient substrates supplemented by mineral fertilizer served as a control representing optimal nutrient supply. Plants grown in a high-nutrient substrate (SoMi 513) were used as an additional reference representing the maximum growth potential of wheat. Wheat growth was monitored for 8 weeks and measured, including the increase of the leaf area as well as shoot and root dry weight in 10 randomized replicates for each substrate and fertilization variant. After harvest, the biomass and N, P, and C contents of the plant shoots and roots were recorded. Algae fertilization of “Null Erde” led to wheat growth, including root hair production, which was similar to mineral-fertilized “Null Erde” and only slightly less vigorous than in the nutrient-rich SoMi 513 substrate. The plants grown in sand were smaller than the plants in “Null Erde” but fertilization by algae nevertheless led to growth that was comparable to mineral fertilizer. These results unambiguously demonstrate that algal biomass is a viable option for delivering nutrients to support agriculture on marginal soils.  相似文献   

7.

With the huge intensification of agriculture and the increasing awareness to human health and natural resources sustainability, there was a shift towards the development of environmental friendly N application approaches that support sustainable use of land and sustain food production.

The effectiveness of such approaches depends on their ability to synchronize plant nitrogen demand with its supply and the ability to apply favored compositions and dosages of N-species. They are also influenced by farming scale and its sophistication, and include the following key concepts: (i) Improved application modes such as split or localized (“depot”) application; (ii) use of bio-amendments like nitrification and urease inhibitors and combinations of (i) and (ii); (iii) use of controlled and slow release fertilizers; (iv) Fertigation-fertilization via irrigation systems including fully automated and controlled systems; and (v) precision fertilization in large scale farming systems. The paper describes the approaches and their action mechanisms and examines their agronomic and environmental significance. The relevance of the approaches for different farming scales, levels of agronomic intensification and agro-technical sophistication is examined as well.

  相似文献   

8.
9.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

10.
Soil and hydroponic culture experiments were conducted to investigate the effects of phosphite (Phi) as phosphorus (P) fertilizer via root and foliar applications on the growth and P supply of komatsuna. In both experiments, root P treatments were combinations of Phi and phosphate (Pi) at different Pi:Phi ratios, for a total of high P level (92 mg P pot?1; the soil experiment) or low P level (0.05 mM P; the hydroponic experiment). Foliar P treatments were deionized water (control), a Pi solution and a Phi solution at low concentration of 0.05% P2O5. In both experiments, shoot dry weight of plants significantly decreased as Pi:Phi ratio decreased. In the soil experiment, plants grew abnormally at a Pi:Phi ratio of 25:75 and died when P was applied to soil entirely as Phi form (0:100 treatment). In the hydroponic experiment, no visible damage was found in shoot but root growth was strongly inhibited with severe damage symptoms at low Pi:Phi ratios. Total P concentration in plant decreased significantly with decreasing Pi:Phi ratio, especially in the hydroponic experiment. Foliar application of Phi although greatly increased total P of plants compared to that of Pi in both experiments, it did not improve but further decreased plant growth at low Pi:Phi ratios in the soil experiment and at all Pi:Phi ratios in the hydroponic experiment. The results of this study clearly indicated that Phi could not be used as P fertilizer by komatsuna plants via both application methods and could not substitute P at any rate at either low or high level. No beneficial effect of Phi was detected even when it was applied at low rate or applied in combination with Pi at different ratios. The effects of Phi were strongly dependent on the P nutrition status of plants; and plants that were not sufficiently fertilized with Pi may become vulnerable to Phi even at low levels.  相似文献   

11.
Limited availability of phosphate ion (Pi) reduces plant growth in natural ecosystems. Here, we report the functional effects of overexpressing an Arabidopsis thaliana purple acid phosphatase encoding gene, AtPAP18, in Nicotiana tabbacum as a crop model plant. Transgenic tobacco plants exhibited significant increases in acid phosphatase activity, total P and Pi contents leading to improved biomass production in both Pi-deficient and Pi-sufficient conditions. Transient expression of AtPAP18::green fluorescent fusion protein in onion epidermal cells indicated that AtPAP18 is a dual-targeted protein, which is detected mainly in the apoplast of the cells after 24 h and in the vacuole after 72 h. Possibly, AtPAP18 protein confers efficient retrieval of Pi from bonded extracellular compounds as well as expendable intracellular Pi-monoesters and anhydrides. These data clearly indicate that overexpression of AtPAP18 gene offers an effective approach for reducing the consumption of chemical Pi fertilizer through increased acquisition of soil Pi and mobilization of internal resources.  相似文献   

12.

Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N, 28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources.

In China, one of the major causes is the increasing de-coupling of animal and plant production. This is occurring at a time when “re-coupling” is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.

  相似文献   

13.
Phosphorus (P) is an essential nutrient for plant growth and productivity. Due to soil fixation, however, phosphorus availability in soil is rarely sufficient to sustain high crop yields. The overuse of fertilizers to circumvent the limited bioavailability of phosphate (Pi) has led to a scenario of excessive soil P in agricultural soils. Whereas adaptive responses to Pi deficiency have been deeply studied, less is known about how plants adapt to Pi excess and how Pi excess might affect disease resistance. We show that high Pi fertilization, and subsequent Pi accumulation, enhances susceptibility to infection by the fungal pathogen Magnaporthe oryzae in rice. This fungus is the causal agent of the blast disease, one of the most damaging diseases of cultivated rice worldwide. Equally, MIR399f overexpression causes an increase in Pi content in rice leaves, which results in enhanced susceptibility to M. oryzae. During pathogen infection, a weaker activation of defence-related genes occurs in rice plants over-accumulating Pi in leaves, which is in agreement with the phenotype of blast susceptibility observed in these plants. These data support that Pi, when in excess, compromises defence mechanisms in rice while demonstrating that miR399 functions as a negative regulator of rice immunity. The two signalling pathways, Pi signalling and defence signalling, must operate in a coordinated manner in controlling disease resistance. This information provides a basis to understand the molecular mechanisms involved in immunity in rice plants under high Pi fertilization, an aspect that should be considered in management of the rice blast disease.  相似文献   

14.

Our study focuses on the study of the phosphorus efficiency on the mineral nutrition of a leguminous plant; to study this efficiency, we tested the effect of increasing doses of phosphorus on the mineral nutrition of faba bean and on the concentration of Nt (total nitrogen), Pi (available phosphorus), KE (exchangeable potassium), C (organic carbon), and the organic matter (OM) rate in the rhizospheric soil after harvest, as well as the concentration of N, P, K, Na, and Ca in the roots, stems, leaves, and seeds of faba bean. The faba bean crop was subjected to four phosphorus doses (P0?=?0 kg/ha; P1?=?70 kg/ha; P2?=?140 kg/ha; P3?=?210 kg/ha). The main results obtained showed that the concentration of the mineral elements in the different faba bean parts reacted differently to the phosphorus treatments. Regarding the dosage of nutrients in the different parts of the faba bean, the results obtained highlight that Pi deficiency in the soil does not only affect phosphate nutrition but can also affect the absorption of other mineral elements, a synergy is recorded between the K concentration in the roots and in the stems with the organic carbon in the soil, and an antagonism between K and Na in the different parts of the plant. All the results obtained in this work show that a phosphate fertilization for doses between 70 kg/ha and 140 kg/ha of P2O5 improves the microbial life of soil microorganisms.

  相似文献   

15.
Zhang  T.Q.  MacKenzie  A.F. 《Plant and Soil》1997,192(1):133-139
Limited efficiency of fertilizer P may be improved through an understanding of soil P fraction changes with time. This study examined sequential changes in soil organic P (Po) and inorganic P (Pi) in a Ste. Rosalie clay (Humic Gleysol; fine, mixed, frigid, Typic Humaquept) under continuous corn with and without P fertilization. Soil P was fractionated into Bicarb-Pi and Po, NaOH-1-Pi and Po, HCl-Pi, NaOH-Pi and Po, and Residue-P. In the non-P fertilized plots, soil total extractable Po declined by 14% of the initial value over five years of corn production, whereas soil Pi fractions were unchanged. The losses of soil Po were mainly from NaOH-1-Po. Added fertilizer P increased NaHCO3-Pi and NaOH-1-Pi in plots receiving 44 and 132 kg P ha-1 yr-1 and increased Residue-P in plots receiving 132 kg P ha-1 yr-1. Although NaOH-1-Po decreased slightly in the plots receiving 44 kg ha-1 yr-1 P fertilizer, total soil extractable Po was maintained in P fertilized plots. Mineralization of from 16 to 29 kg P ha-1 yr-1 Po was needed to account for soil Po losses. Bicarb-Pi and NaOH-1-Pi appeared to be most important for assessment of soil P fertility changes in long-term fertilized soils.  相似文献   

16.
Abstract. A cross‐over fertilization experiment was carried out in Dutch floating fens to investigate effects on biomass production in the same and the following years. In total 16 fertilizer treatments were applied, combining four treatments in 1999 with four treatments in 2000 (addition of 20 g.m?2 N, 5 g.m?2 P, both elements and unfertilized control). The above‐ground biomass production of vascular plants was co‐limited by N and P in both years. However, in plots that were only fertilized in 1999 the effects of individual nutrients differed between the two years: N‐fertilization slightly increased the amount of biomass produced in the same year (1999), whereas P‐fertilization did so in the following year (2000). Fertilizer applied in 1999 also influenced the effects of fertilizer applied in 2000. One year after N‐fertilization vascular plant growth was still co‐limited by N and P, but one year after P‐fertilization, vascular plant growth was only limited by N. Bryophyte biomass responded weakly to fertilization. Nutrient concentrations in plant biomass, nutrient standing crops and measurements of N and P availability in the soil indicated that one year after fertilization, the N‐fertilizer had mostly ‘disappeared’ from N‐fertilized plots, whereas the availability of P remained markedly enhanced in P‐fertilized plots. In addition, P‐fertilization enhanced the uptake of N by plants the following year. The time‐dependence of fertilizer effects was probably caused by (1) higher addition of P than of N relative to the requirements of plants; (2) longer retention of P than of N in the system; (3) positive effect of P‐fertilization on the availability of N; (4) contrasting effects of N‐ and P‐fertilization on nutrient losses by plants and/or on their responses to subsequent nutrient addition; (5) changing interactions between vascular plants and mosses (mainly Sphagnum spp.); (6) nutrient export through the repeated harvest of above‐ground biomass. To determine which nutrient limits plant growth fertilization experiments should be short, avoiding that indirect effects of a non‐limiting nutrient influence results. To indicate how changed nutrient supply will affect an ecosystem longer‐term experiments are needed, so that indirect effects have time to develop and be detected.  相似文献   

17.

Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N load on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N load has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended. A comprehensive approach that applies political and technological measures with closer co-operation is necessary to control reactive N in the environment.

  相似文献   

18.
大灰藓(Hypnum plumaeforme)具有良好的景观效果和应用前景,但生长缓慢且缺少系统的栽培技术研究,对其推广应用有一定影响。该研究分别将磷肥(P)、钾肥(K)、PK复合肥作为一次性基肥使用,研究不同施肥处理下大灰藓的生长生理和营养元素的变化,并用模糊隶属函数法选出最佳施肥处理。结果表明,施肥能显著增加大灰藓的覆盖度,K18处理的植株覆盖度较对照(CK)提高了53.9%。施肥能显著增加植株类胡萝卜素、叶绿素(除K12)、可溶性蛋白(P24、PK12、PK30除外)含量,降低植株可溶性糖含量(除P24、PK6),P18处理的植株类胡萝卜素和叶绿素含量最高,分别为CK的3.42和2倍。P肥显著增加了植株P含量,以P18的影响最大,为CK的1.33倍;K肥对植株K含量积累的促进作用最好,K18处理的植株K含量最高(为CK的1.62倍)。模糊综合评价表明K1...  相似文献   

19.

Background and aims

Limited information is available on how cadmium (Cd) applied in phosphate fertilizer interacts with soil and environmental conditions over time to affect crop Cd concentrations.

Methods

Field studies from 2002 to 2009 at seven locations evaluated the cumulative effects of P fertilizer rate and Cd concentration on seed Cd concentration of durum wheat (Triticum turgidum L.) and flax (Linum usitatissiumum L.).

Results

Soil characteristics and environment affected Cd availability. Durum wheat grain Cd increased with P fertilizer rate but effect on flaxseed Cd concentration was smaller. Cadmium concentration in fertilizer had a greater effect on flaxseed than durum wheat Cd concentration. Seed Cd concentration of both crops was greatest with the highest rate P fertilizer containing the highest Cd concentration. There was not a strong cumulative effect of fertilization over the 8 years of the study, indicating attenuation of Cd availability over time.

Conclusions

Cadmium in phosphate fertilizer increases Cd available for crop uptake, but crop Cd concentration is also affected by soil characteristics and annual environmental conditions. Type of crop produced and soil and environmental characteristics that affect phytoavailability must be taken into account when assessing the Cd risk from P fertilization.  相似文献   

20.
Orthophosphate (H2PO4?, Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P‐acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P‐use efficiency). Improved P‐use efficiency may be achieved by producing high‐yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P‐esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号