首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25187篇
  免费   2327篇
  国内免费   1939篇
  2024年   16篇
  2023年   225篇
  2022年   303篇
  2021年   920篇
  2020年   710篇
  2019年   962篇
  2018年   1005篇
  2017年   745篇
  2016年   1089篇
  2015年   1576篇
  2014年   1889篇
  2013年   1856篇
  2012年   2476篇
  2011年   2248篇
  2010年   1427篇
  2009年   1278篇
  2008年   1617篇
  2007年   1501篇
  2006年   1286篇
  2005年   1110篇
  2004年   977篇
  2003年   887篇
  2002年   784篇
  2001年   409篇
  2000年   337篇
  1999年   308篇
  1998年   229篇
  1997年   167篇
  1996年   120篇
  1995年   104篇
  1994年   103篇
  1993年   62篇
  1992年   93篇
  1991年   80篇
  1990年   80篇
  1989年   60篇
  1988年   50篇
  1987年   35篇
  1986年   45篇
  1985年   41篇
  1984年   22篇
  1983年   28篇
  1982年   22篇
  1981年   27篇
  1980年   13篇
  1979年   15篇
  1978年   12篇
  1976年   10篇
  1972年   14篇
  1969年   9篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
In a study of the effect of glycerin in transport media on Vibrio parahaemolyticus and Salmonella, it was found that a concentration of 30% glycerin was highly inhibitory for V. parahaemolyticus and to a lesser degree for Salmonella. The incorporation of peptone or human feces in media did not reduce the inhibitory effect of glycerin. In media with 15% glycerin, viable counts of V. parahaemolyticus and Salmonella increased after 24 hr of incubation both in the presence and absence of feces. Due to the concurrent increase in the total bacterial count in the media containing feces, no enrichment effect was noted.  相似文献   
2.
3.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
4.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
5.
The heritability of eating behavior and body weight–related traits in Asian populations has not been reported. The purpose of this study was to estimate the heritability of eating behavior and the body weight–related traits of current weight and self‐reported past weight among twins and their families. Study subjects were 2,144 Korean, adult, same‐sex twins and their families at the ages between 20 and 65 years (443 monozygotic (MZ) and 124 dizygotic (DZ) twin pairs, and 1,010 individuals of their family). The Dutch Eating Behavior Questionnaire (DEBQ) was used to assess three eating behavior subscales measuring restraint, emotional eating, and external eating. A variance component approach was used to estimate heritability. After consideration of shared environmental effects and adjustment for age and sex effects, the heritability estimates ± s.e. among twins and their family members were 0.31 ± 0.036 for restraint, 0.25 ± 0.098 for emotional eating, 0.25 ± 0.060 for external eating, 0.77 ± 0.032 for measured current body weight, and 0.70 ± 0.051 for self‐reported weight at 20 years old. The three DEBQ subscales were associated with all weight related traits after adjustment for age and sex. These results suggest eating behaviors and weight‐related traits have a genetic influence, and eating behaviors are associated with obesity indexes. Our findings from Korean twin family were similar to those reported in Western populations.  相似文献   
6.
The RAD6 gene of Saccharomyces cerevisiae, which encodes a ubiquitin-conjugating enzyme, is required for DNA repair, DNA damage-induced mutagenesis and sporulation. To evaluate the biological relevance of the thioester adduct between RAD6 protein and ubiquitin, formed as an obligatory, transient intermediate during ubiquitin conjugation to substrates, we altered cysteine 88 in RAD6 to serine. Esterification with ubiquitin occurs at serine 88 in the mutant protein, but conjugation of ubiquitin to the test substrate histone H2A is inactivated. Phenotypically, strains harboring the rad6 Ser88 allele are indistinguishable from rad6 deletion (rad6 delta) mutant cells. These findings argue against ligation of ubiquitin at cysteine 88 acting as a functional switch of a cryptic biochemical activity in RAD6.  相似文献   
7.
8.
9.
Calli were induced from 300,000 embryos isolated from immature to mature stage of seeds collected on late September from 14 elite trees. When the embryos were cultured onto plastic Petri-dish containing 20 mL of modified B5 basal medium supplemented with 3% (w/v) sucrose, 500 mg/L casein hydrolysate, 250 mg/L myo-inositol, 0.5% (w/v) polyvinyl polypyrrolidon (PVPP), 2×MS vitamins, 0.5 mg/L gibberellic acid, and 10 mg/L 2,4-D after 2 weeks of culture, yellowish-white calli were immediately formed on the surfaces of embryos, and subcultured for 4 weeks in same culture medium. Because most of calli maintained for more than 3 months were revealed differences in their colors, surface texture, and growth rate, visual selection was made for first round screening. When the size of visually selected calli larger than 19 mm in their diameter were inoculated, persistent proliferation was observed. Among the plating methods tested for the selection of rapid growing cell lines at single cell and/or small cell aggregate level, 2-layer spread plating revealed as the best for single cell cloning. To enhance cell growth and maintain high rate of viability for long-term culture of yew cells in bioreactor, final cell volume less than 50% in SCV seemed to be the best. Time course study revealed that 30% of inoculum density was suitable for fed batch culture. Among the tested conditional media, the rate of 1∶2 (old medium: fresh medium) was recorded at the best for cell growth.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号