首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   14篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有97条查询结果,搜索用时 265 毫秒
1.
The importance of nuclear DNA synthesis for the doubling, or reproduction, of centrosomes in cells that are not growth-limited, such as sea urchin eggs, has not been clearly defined. Studies of enucleated, fertilized eggs show that nuclear activities are not required at each cell cycle for the normal reproduction of the complete centrosome. However, other studies report that the inhibition of nuclear DNA synthesis in intact eggs by the drug aphidicolin prevents centrosome reproduction and entry into mitosis as seen by nuclear envelope breakdown. To resolve this paradox, we systematically characterized the effect of aphidicolin on cell division in eggs from three species of sea urchins. Eggs were continuously treated with 5 or 10 micrograms/ml aphidicolin starting 5 min after fertilization. This blocked total incorporation of 3H-thymidine into DNA by at least 90%, as previously reported. We found that the sperm aster always doubles prior to first mitosis. Over a period of several hours, the centrosomes reproduce in the normal 2-4-8-16 fashion, with a period that is longer and more variable than normal. In every culture, a variable percentage of the eggs undergoes nuclear envelope breakdown. Once broken down, the nuclear envelope never visibly reforms even though centrosomes continue to double. Fluorescent labeling of DNA revealed that the chromatin does not condense into discrete chromosomes. Whether or not the nuclear envelope breaks down, the chromatin appears as an amorphous mass of fibers stretched between first two and then four asters. Later, the nuclear envelope/chromatin loses its association with some or all centrosomes. Our results were the same for all eggs at both drug concentrations. Thus, nuclear DNA synthesis is not required for centrosome reproduction in sea urchin eggs.  相似文献   
2.
3.
4.
The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emetine and anisomycin, drugs that have separate targets in the protein synthetic pathway. These drugs inhibit the postfertilization incorporation of [35S]methionine into precipitable material by 97.3-100%. Autoradiography of SDS-PAGE gels of drug-treated zygotes reveals that [35S]methionine incorporates exclusively into material that does not enter the gel and material that runs at the dye front; no other labeled bands are detected. Fertilization events and syngamy are normal in drug-treated zygotes, but the cell cycle arrests before first mitosis. The sperm aster doubles once in all zygotes to yield two asters. In a variable but significant percentage of zygotes, the asters continue to double. This continued doubling is slower than normal, asynchronous between zygotes, and sometimes asynchronous within individual zygotes. High voltage electron microscopy of serial semithick sections from drug-treated zygotes reveals that 90% of the daughter centrosomes contain two centrioles of normal appearance. From these results, we conclude that centrosome reproduction in sea urchin zygotes is not controlled by the accumulation of cyclin proteins or the synthesis of centrosome-specific proteins at each cell cycle. New centrosomes are assembled from preexisting pools of ready-to-use subunits. Furthermore, our results indicate that centrosomal and nuclear events are regulated by separate pathways.  相似文献   
5.
Accumulating evidence has revealed that livin gene and BCL-2 modifying factor (BMF) gene are closely associated with the initiation and progression of colon carcinoma by activating or suppressing multiple malignant processes. Those genes that can detect colon - cancer are a promising approach for cancer screening and diagnosis. This study aimed to evaluate correlation between livin, BMF and p53 genes expression in colon cancer tissues of patients included in the study, and their relationship with clinicopathological features and survival outcome in those patients. In this study, 50 pathologically diagnosed early cancer colon patients included and their tissue biopsy with 50 matched adjacent normal tissue, and 50 adenoma tissue specimens were analyzed for livin gene and BMF gene expressions using real time PCR. The relationship of those genes expressions with clinicopathological features, tumor markers, Time to Progression and overall survival for those patients were correlated in cancer colon group. In this study, there was a significant a reciprocal relationship between over expression of livin gene and down regulation of BMF and p53 genes in colon cancer cells. Livin mRNA was significantly higher, while BMF and p53 mRNA were significantly lower in colorectal cancer tissue compared to benign and normal colon tissue specimens (P < 0.001), however, this finding was absent between colon adenomas and normal mucosa. There was a significant association between up regulation of livin and down regulation of BMF and p53 expressions with more aggressive tumor (advanced TNM stage), rapid progression with metastasis and decreased overall survival in cancer colon patients, hence these genes can serve as significant prognostic markers of poor outcome in colon cancer patients. This work highlights the role of livin, BMF and p53 genes in colorectal tumorigenesis and the applicability of using those genes as a diagnostic and prognostic markers in patients with colon carcinoma and as a good target for cancer colon treatment in the future.  相似文献   
6.
Essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemon were tested for their antimicrobial activities against some plant pathogenic micro-organisms (Fusarium oxysporum, Alternaria alternate, Penicilium italicum Penicilium digitatum and Botyritus cinerea). Essential oils of fennel, peppermint, caraway were selected as an active ingredient for the formulation of biocides due to their efficiency in controlling the tested micro-organisms. Successful emulsifiable concentrates (biocides) were prepared from these oils using different emulsifiers (Emulgator B.L.M. Tween20 and Tween80) and different fixed oils (sesame, olive, cotton and soybean oils). Physico-chemical properties of the formulated biocide (spontaneous emulsification, emulsion stability test, cold stability and heat stability tests as well as viscosity, surface tension and pH) were measured. The prepared biocides were ready to be tested for application in a future work as a safe pesticide against different pathogens.  相似文献   
7.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   
8.
Centrosome amplification (the presence of more than two centrosomes at mitosis) is characteristic of many human cancers. Extra centrosomes can cause the assembly of multipolar spindles, which unequally distribute chromosomes to daughter cells; the resulting genetic imbalances may contribute to cellular transformation. However, this raises the question of how a population of cells with centrosome amplification can survive such chaotic mitoses without soon becoming non-viable as a result of chromosome loss. Recent observations indicate that a variety of mechanisms partially mute the practical consequences of centrosome amplification. Consequently, populations of cells propagate with good efficiency, despite centrosome amplification, yet have an elevated mitotic error rate that can fuel the evolution of the transformed state.  相似文献   
9.
10.
During interphase, the centrosome concentrates cell stress response molecules, including chaperones and proteasomes, into a proteolytic center. However, whether the centrosome functions as proteolytic center during mitosis is not known. In this study, cultured mammalian cells were treated with the proteasome inhibitor MG 132 and spindle morphology in mitotic cells was characterized in order to address this issue. Proteasome inhibition during mitosis leads to the formation of additional asters that cause the assembly of multipolar spindles. The cause of this phenomenon was investigated by inhibiting microtubule-based transport and protein synthesis. These experimental conditions prevented the formation of supernumerary asters during mitosis. In addition, the expression of dsRed without proteasome inhibition led to the fragmentation of spindle poles. These experiments showed that the formation of extra asters depends on intact microtubule-based transport and protein synthesis. These results suggest that formation of supernumerary asters is due to excessive accumulation of proteins at the spindle poles and consequently fragmentation of the centrosome. Together, this leads to the conclusion that the centrosome functions as proteolytic center during mitosis and proteolytic activity at the spindle poles is necessary for maintaining spindle pole integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号