首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

2.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

3.
Bacterial degradation of dimethylsulfoniopropionate (DMSP) represents one of the main sources of the climatically–active trace gas dimethylsulfide (DMS) in the upper ocean. Short-term enrichment studies to stimulate specific pathways of DMSP degradation in oligotrophic waters from the Sargasso Sea were used to explore regulatory connections between the different bacterial DMSP degradation steps and determine potential biological controls on DMS formation in the open ocean. Experiments were conducted with surface water at the BATS station in the western North Atlantic Ocean. We added selected organic substrates (25 nmol L?1 final concentration) to induce different steps of DMSP degradation in the microbial community, and then measured DMSP dynamics (assimilation and turnover rates), DMS yields (using 35sulfur-DMSP tracer), and bacterial production rates. In most treatments, the main fate of consumed S-DMSP was excretion as a non-volatile S product. 35S-DMSP tracer turnover rates (accumulation + assimilation + excretion of transformed products as DMS or others) increased upon addition of DMSP and glucose, but not acrylate, methymercaptopropionate (MMPA), methanethiol, DMS or glycine betaine. DMS yields from 35S-DMSP never exceeded 16 % except in a short term DMSP enrichment, for which the yield reached 45 % (±17 %). Results show that availability of non-sulfur containing labile C sources (glucose, acrylate) decreased bacterial DMS production while stimulating bacterial heterotrophic production, and suggest an influence of bacterial sulfur demand in controlling DMS-yielding pathways. However, regulatory effects on 35S-DMSP fate were not consistent across all reduced sulfur compounds (i.e., methanethiol or MMPA), and may reflect alternate roles of DMSP as a bacterial energy source and osmolyte.  相似文献   

4.
The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria, and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C‐N bonds, but DddP is deduced to cleave C‐S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2‐(N‐morpholino) ethanesulfonic acid or PO43? and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion‐shift catalytic mechanism of RlDddP for DMSP cleavage. Furthermore, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.  相似文献   

5.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

6.
Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems.  相似文献   

7.
This is the first report describing the complete oxidation of dimethyl sulfide (DMS) to sulfate by an anoxygenic, phototrophic purple sulfur bacterium. Complete DMS oxidation was observed in cultures of Thiocapsa roseopersicina M11 incubated under oxic/light conditions, resulting in a yield of 30.1 mg protein mmol–1. No oxidation of DMS occurred under anoxic/light conditions. Chloroform, methyl butyl ether, and 3-amino-1,2,4-triazole, which are specific inhibitors of aerobic DMS oxidation in thiobacilli and hyphomicrobia, did not affect DMS oxidation in strain M11. This could be due to limited transport of the inhibitors through the cell membrane. The growth yield on sulfide as sole electron donor was 22.2 mg protein mmol–1 under anoxic/light conditions. Since aerobic respiration of sulfide would have resulted in yields lower than 22 mg protein mmol–1, the higher yield on DMS under oxic/light conditions suggests that the methyl groups of DMS have served as an additional carbon source or as an electron donor in addition to the sulfide moiety. The kinetic parameters V max and K m for DMS oxidation under oxic/light conditions were 12.4 ± 1.3 nmol (mg protein)–1 min–1 and 2 μM, respectively. T. roseopersicina M11 also produced DMS by cleavage of dimethylsulfoniopropionate (DMSP). Specific DMSP cleavage rates increased with increasing initial substrate concentrations, suggesting that DMSP lyase was only partly induced at lower initial DMSP concentrations. A comparison of T. roseopersicina strains revealed that only strain M11 was able to oxidize DMS and cleave DMSP. Both strain M11 and strain 5811 accumulated DMSP intracellularly during growth, while strain 1711 showed neither of these characteristics. Phylogenetic comparison based on 16S rRNA gene sequence revealed a similarity of 99.0% between strain M11 and strain 5811, and 97.6% between strain M11 and strain 1711. DMS and DMSP utilization thus appear to be strain-specific. Received: 26 March 1999 / Accepted: 18 June 1999  相似文献   

8.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

9.
Dimethylsulfoniopropionate (DMSP) is a natural product of algae and aquatic plants, particularly those from saline environments. We investigated whether DMSP could serve as a precursor of thiols in anoxic coastal marine sediments. The addition of 10 or 60 μM DMSP to anoxic sediment slurries caused the concentrations of 3-mercaptopropionate (3-MPA) and methanethiol (MSH) to increase. Antibiotics prevented the appearance of these thiols, indicating biological formation. Dimethyl sulfide (DMS) and acrylate also accumulated after the addition of DMSP, but these compounds were rapidly metabolized by microbes and did not reach high levels. Acrylate and DMS were probably generated by the enzymatic cleavage of DMSP. MSH arose from the microbial metabolism of DMS, since the direct addition of DMS greatly increased MSH production. Additions of 3-methiolpropionate gave rise to 3-MPA at rates similar to those with DMSP, suggesting that sequential demethylation of DMSP leads to 3-MPA formation. Only small amounts of MSH were liberated from 3-methiolpropionate, indicating that demethiolation was not a major transformation for 3-methiolpropionate. We conclude that DMSP was degraded in anoxic sediments by two different pathways. One involved the well-known enzymatic cleavage to acrylate and DMS, with DMS subsequently serving as a precursor of MSH. In the other pathway, successive demethylations of the sulfur atom proceeded via 3-methiolpropionate to 3-MPA.  相似文献   

10.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到1×10~9吨。在北大西洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的裂解是全球硫循环和碳循环的重要步骤。目前,8种参与裂解DMSP的DMSP裂解酶已被报道。在已发现的8种DMSP裂解酶中,3种DMSP裂解酶的催化机制得到了研究和阐明。本文根据国内外研究成果,主要对DMSP裂解过程的酶促催化机制的研究进展进行综述,认为在今后工作中需要继续发现新的DMSP裂解酶,并进一步揭示海洋微生物裂解DMSP的分子机制。  相似文献   

11.
Several bloom‐forming marine algae produce concentrated intracellular dimethylsulfoniopropionate (DMSP) and display high DMSP cleavage activity in vitro and during lysis after grazing or viral attack. Here we show evidence for cleavage of DMSP in response to environmental cues among different strains of the haptophyte Emiliania huxleyi (Lohmann) Hay et Mohler and the dinoflagellate Alexandrium spp. (Halim). Sparging or shaking live cells of either taxon increased dimethyl sulfide (DMS), especially in dinoflagellates, known to be very sensitive to shear stresses. Additions of polyamines, known triggers of exocytosis in some protists, also stimulated DMSP cleavage in a dose‐responsive manner. We observed DMS production by some algae after shifts in light regime. When most exponential‐phase E. huxleyi were transferred to continuous darkness, cells decreased in volume and DMSP content within 24 h; DMSP content per unit cell volume remained relatively steady. DMS accumulated as long as cells remained in the dark, but on returning to a light:dark cycle DMS accumulation ceased within 24 h. However, E. huxleyi strain CCMP 373, containing highly active in vitro DMSP lyase, produced only transient accumulations of DMS in the dark. This was apparently due to production and concomitant oxidation or uptake of DMS, because cells of this strain rapidly removed DMS added to cultures. Three strains of the dinoflagellate Alexandrium tamarense containing high in vitro DMSP lyase activity showed no DMS production in the dark, and all appeared to remove additions of DMS. Alexandrium tamarense strain CCMP 1771 also removed dimethyl disulfide, an inhibitor of bacterial DMS consumption. These data suggest that physical or chemical cues can trigger algal DMSP cleavage, but DMS production may be masked by subsequent oxidation and/or uptake.  相似文献   

12.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

13.
Bacterial species associated with the dimethylsulfoniopropionate (DMSP)-producing phytoplankton Scrippsiella trochoidea were cultured and identified, with the aim of establishing their ability to metabolise DMSP, dimethylsulfide (DMS) and dimethylsulfoxide (DMSO). Results demonstrate that of the cultivable bacteria only α-Proteobacteria were capable of producing DMS from DMSP. The concentration of DMSP was shown to affect the amount of DMS produced. Lower DMSP concentrations (1.5?μmol?dm?3) were completely assimilated, whereas higher concentrations (10?μmol?dm?3) resulted in increasing amounts of DMS being produced. By contrast to the restricted set of bacteria that metabolised DMSP,?~?70% of the bacterial isolates were able to ‘consume’ DMS. However, 98-100% of the DMS removed was accounted for as DMSO. Notably, a number of these bacteria would only oxidise DMS in the presence of glucose, including members of the γ-Proteobacteria and Bacteroidetes. The observations from this study, coupled with published field data, identify DMS oxidation to DMSO as a major transformation pathway for DMS, and we speculate that the fate of DMS and DMSP in the field are tightly coupled to the available carbon produced by phytoplankton.  相似文献   

14.
Abstract: Three strains of aerobic bacteria were isolated from water and sediment samples of Mono Lake, a moderately hypersaline (90 ppt), alkaline (pH 9.7) lake in California. The organisms, Gram-negative rods, grew fastest at about pH 9.7 with no growth or much slower growth at pH 7.0. All three isolates grew on glycine betaine (GB) and respirometric experiments indicated that catabolism was by sequential demethylation with dimethyl glycine and sarcosine as intermediates. Two of the isolates also grew on dimethylsulfoniopropionate (DMSP), one with cleavage of the DMSP to yield dimethyl sulfide (DMS) and acrylate, and the other by demethylation with 3-methiolpropionate (MMPA) as an intermediate and the production of methanethiol from MMPA. The methylated osmolytes supported growth at salinities similar to those in Mono Lake, but, at higher salinities, catabolism was suppressed and GB and DMSP functioned as osmolytes. GB and DMSP probably originate from cyanobacteria and/or phytoplankton in Mono Lake and this report is the first indication of both the DMS and demethylation/methanethiol-producing pathways for DMSP degradation in a nonmarine environment.  相似文献   

15.
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds.  相似文献   

16.
Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.  相似文献   

17.
Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.  相似文献   

18.
Dimethylsulfoniopropionate (DMSP), an abundant osmoprotectant found in marine algae and salt marsh cordgrass, can be metabolized to dimethyl sulfide (DMS) and acrylate by microbes having the enzyme DMSP lyase. A suite of DMS-producing bacteria isolated from a salt marsh and adjacent estuarine water on DMSP agar plates differed markedly from the pelagic strains currently in culture. While many of the salt marsh and estuarine isolates produced DMS and methanethiol from methionine and dimethyl sulfoxide, none appeared to be capable of producing both methanethiol and DMS from DMSP. DMSP, and its degradation products acrylate and beta-hydroxypropionate but not methyl-3-mecaptopropionate or 3-mercaptopropionate, served as a carbon source for the growth of all the alpha- and beta- but only some of the gamma-proteobacterium isolates. Phylogenetic analysis of 16S rRNA gene sequences showed that all of the isolates were in the group Proteobacteria, with most of them belonging to the alpha and gamma subclasses. Only one isolate was identified as a beta-proteobacterium, and it had >98% 16S rRNA sequence homology with a terrestrial species of Alcaligenes faecalis. Although bacterial population analysis based on culturability has its limitations, bacteria from the alpha and gamma subclasses of the Proteobacteria were the dominant DMS producers isolated from salt marsh sediments and estuaries, with the gamma subclass representing 80% of the isolates. The alpha-proteobacterium isolates were all in the Roseobacter subgroup, while many of the gamma-proteobacteria were closely related to the pseudomonads; others were phylogenetically related to Marinomonas, Psychrobacter, or Vibrio species. These data suggest that DMSP cleavage to DMS and acrylate is a characteristic widely distributed among different phylotypes in the salt marsh-estuarine ecosystem.  相似文献   

19.
Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur compound in marine algae and denitrification influences nitrogen availability to primary producers, the key regulators of coastal eutrophication. In this study, we tested the effect of DMSP on the nitrous oxide (N2O) reduction step of denitrification in sediments and biofilms from the Douro and Ave estuaries (NW Portugal) and in pure cultures of a denitrifying bacterium, Ruegeria pomeroyi. N2O accumulation rates were monitored in sediment slurries and bacterial cell suspensions amended with DMSP concentrations ranging from 0 to 5 mM. In these treatments N2O accumulation rates increased linearly with DMSP concentration (R 2 from 0.89 to 0.99, p < 0.001), suggesting an inhibitory effect of DMSP on the nitrous oxide reductase activity. The addition of DMSP to sediments and bacterial culture resulted in accumulation of dimethylsulfide (DMS) as well as N2O. However, no direct inhibition on N2O reductase activity by DMS was observed. Natural concentrations of DMSP in the different estuarine sites were found to be linearly correlated to natural N2O effluxes (R 2 = 0.64, p < 0.001), suggesting that DMSP may negatively affect N2O reductase in situ. This newly identified interaction between DMSP and N2O emissions may have a significant ecological role as the inhibition of the nitrous oxide reduction enhances nitrogen loss via N2O. Since N2O is a powerful greenhouse gas, the results from our study may be important for evaluating climate change scenarios.  相似文献   

20.
Dinoflagellates are recognised as one of the major phytoplankton groups that produce dimethylsulphoniopropionate (DMSP), the precursor of the marine trace gas dimethylsulphide (DMS) which has climate-cooling potential. To improve the prospects for including dinoflagellates in global climate models that include DMSP-related processes, we increased the data base for this group by measuring DMSP, DMS-producing enzyme activity (DPEA), carbon, nitrogen and Chl a in nine clonal dinoflagellate cultures (1 heterotrophic and 8 phototrophic strains). Growth rates ranged from 0.11 to 1.92?day?1 with the highest value being for the heterotroph Crypthecodinium cohnii. Overall, we observed two orders of magnitude variability in DMSP content (11–364?mM) and detected DPEA in five of the nine strains (0.61–59.73?fmol?cell?1?h?1). Cell volume varied between 454 and 18,439?μm3 and whilst C and N content were proportional to the cell volume, DMSP content was not. The first DMSP measurements for a dinoflagellate from Antarctic waters and a species with diatom-like plastids are included. Lower DMSP concentrations were found in three small athecate species and a dinoflagellate with haptophyte-like plastids. The highest concentrations and production rates tended to be in globally distributed dinoflagellates and the heterotroph. Photosynthetic species that are distributed in temperate to tropical waters showed low DMSP concentrations and production rates and the polar representative showed moderate concentration and a low production rate. Estuarine species had the lowest concentrations and production rates. These data should help refine the inclusion of dinoflagellates as a functional group in future global climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号