首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2021年   2篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1982年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.  相似文献   
2.
3.
Both enantiomers of 20-fluorocamptothecin and the racemate have been prepared by total synthesis. The (R)-enantiomer is essentially inactive in a topoisomerase-I/DNA assay, while the (S)-enantiomer is much less active than (20S)-camptothecin. The lactone ring of 20-fluorocamptothecin hydrolyzes more rapidly than that of camptothecin in PBS. The results provide insight into the role of the 20-hydroxy group in the binding of camptothecin to topoisomerase-I and DNA.  相似文献   
4.
Hsp33, an Escherichia coli cytosolic chaperone, is inactive under normal conditions but becomes active upon oxidative stress. It was previously shown to dimerize upon activation in a concentration- and temperature-dependent manner. This dimer was thought to bind to aggregation-prone target proteins, preventing their aggregation. In the present study, we report small angle x-ray scattering (SAXS), steady state and time-resolved fluorescence, gel filtration, and glutaraldehyde cross-linking analysis of full-length Hsp33. Our circular dichroism and fluorescence results show that there are significant structural changes in oxidized Hsp33 at different temperatures. SAXS, gel filtration, and glutaraldehyde cross-linking results indicate, in addition to the dimers, the presence of oligomeric species. Oxidation in the presence of physiological salt concentration leads to significant increases in the oligomer population. Our results further show that under conditions that mimic the crowded milieu of the cytosol, oxidized Hsp33 exists predominantly as an oligomeric species. Interestingly, chaperone activity studies show that the oligomeric species is much more efficient compared with the dimers in preventing aggregation of target proteins. Taken together, these results indicate that in the cell, Hsp33 undergoes conformational and quaternary structural changes leading to the formation of oligomeric species in response to oxidative stress. Oligomeric Hsp33 thus might be physiologically relevant under oxidative stress.  相似文献   
5.
Oxidative stress and Cu2+ have been implicated in several neurodegenerative diseases and in cataract. Oxidative stress, as well as Cu2+, is also known to induce the expression of the small heat shock proteins α-crystallins. However, the role of α-crystallins in oxidative stress and in Cu2+-mediated processes is not clearly understood. We demonstrate using fluorescence and isothermal titration calorimetry that α-crystallins (αA- and αB-crystallin and its phosphorylation mimic, 3DαB-crystallin) bind Cu2+ with close to picomolar range affinity. The presence of other tested divalent cations such as Zn2+, Mg2+, and Ca2+ does not affect Cu2+ binding, indicating selectivity of the Cu2+-binding site(s) in α-crystallins. Cu2+ binding induces structural changes and increase in the hydrodynamic radii of α-crystallins. Cu2+ binding increases the stability of α-crystallins towards guanidinium chloride-induced unfolding. Chaperone activity of αA-crystallin increases significantly upon Cu2+ binding. α-Crystallins rescue amyloid beta peptide, Aβ1-40, from Cu2+-induced aggregation in vitro. α-Crystallins inhibit Cu2+-induced oxidation of ascorbate and, hence, prevent the generation of reactive oxygen species. Interestingly, α-synuclein, a Cu2+-binding protein, does not inhibit this oxidation process significantly. We find that the Cu2+-sequestering (or redox-silencing) property of α-crystallins confers cytoprotection. To the best of our knowledge, this is the first study to reveal high affinity (close to picomolar) for Cu2+ binding and redox silencing of Cu2+ by any heat shock protein. Thus, our study ascribes a novel functional role to α-crystallins in Cu2+ homeostasis and helps in understanding their protective role in neurodegenerative diseases and cataract.  相似文献   
6.
The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.  相似文献   
7.
Apolipoprotein E (apoE) is the major apolipoprotein of the CNS. Differential expression of apoE isoforms has been linked to longevity and to the pathogenesis of Alzheimer's disease. Several studies have demonstrated that this glycoprotein is important in mature as well as in aging CNS, where it may serve neurotrophic and/or neuroprotective functions. Some reports have shown that apoE-deficient mice have age-dependent neurodegeneration and cognitive impairment; others have not confirmed these observations. ApoE-deficient mice also develop hypercholesterolemia on a chow diet and have in vivo increased plasma lipid peroxidation products. F2-isoprostanes are prostaglandin F2alpha isomers and chemically stable peroxidation products of arachidonic acid. Both isoprostane F2alpha-III and isoprostane F2alpha-VI were markedly elevated in the brains of aged apoE-deficient mice compared with either wild-type C57 Bl/6 mice or a distinct mouse model of hypercholesterolemia, the low-density lipoprotein receptor-deficient mouse. By contrast, no difference in isoprostane levels was observed in young apoE-deficient mice compared with age-matched wild-type control mice. Our findings indicate that disorder of lipid metabolism in the absence of apoE can induce an age-dependent increase in brain lipid peroxidation products.  相似文献   
8.
Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.

COVID positivity and vitamin D intake, red meat and heart disease; how can we discern when biomedical associations are reliable and when they are susceptible to our own arbitrary choices and assumptions? This study presents “quantvoe,” a software package for exploring the entirety of possible findings due to the multiverse of associations possible.  相似文献   
9.
The liver X receptor (LXR) signaling pathway is an important modulator of atherosclerosis, but the relative importance of the two LXRs in atheroprotection is incompletely understood. We show here that LXRα, the dominant LXR isotype expressed in liver, plays a particularly important role in whole-body sterol homeostasis. In the context of the ApoE(-/-) background, deletion of LXRα, but not LXRβ, led to prominent increases in atherosclerosis and peripheral cholesterol accumulation. However, combined loss of LXRα and LXRβ on the ApoE(-/-) background led to an even more severe cholesterol accumulation phenotype compared to LXRα(-/-)ApoE(-/-) mice, indicating that LXRβ does contribute to reverse cholesterol transport (RCT) but that this contribution is quantitatively less important than that of LXRα. Unexpectedly, macrophages did not appear to underlie the differential phenotype of LXRα(-/-)ApoE(-/-) and LXRβ(-/-)ApoE(-/-) mice, as in vitro assays revealed no difference in the efficiency of cholesterol efflux from isolated macrophages. By contrast, in vivo assays of RCT using exogenously labeled macrophages revealed a marked defect in fecal sterol efflux in LXRα(-/-)ApoE(-/-) mice. Mechanistically, this defect was linked to a specific requirement for LXRα(-/-) in the expression of hepatic LXR target genes involved in sterol transport and metabolism. These studies reveal a previously unrecognized requirement for hepatic LXRα for optimal reverse cholesterol transport in mice.  相似文献   
10.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号