首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   41篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   18篇
  2019年   23篇
  2018年   9篇
  2017年   14篇
  2016年   18篇
  2015年   22篇
  2014年   11篇
  2013年   39篇
  2012年   19篇
  2011年   33篇
  2010年   17篇
  2009年   21篇
  2008年   34篇
  2007年   28篇
  2006年   28篇
  2005年   28篇
  2004年   30篇
  2003年   31篇
  2002年   26篇
  2001年   26篇
  2000年   34篇
  1999年   30篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1992年   16篇
  1991年   20篇
  1990年   10篇
  1989年   6篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1979年   7篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1968年   3篇
  1966年   1篇
排序方式: 共有720条查询结果,搜索用时 109 毫秒
1.
2.
Summary A new haptenic compound, a muramyl dipeptide (MDP) derivative (designated as L4-MDP-ONB) cross-reactive with Bacillus Calmette Guerin (BCG) was synthesized. The cross-reactivity of L4-MDP hapten to BCG was demonstrated from the following evidence; (a) lymph node cells from BCG-primed C3H/HeN mice exhibited appreciable L4-MDP-specific proliferative responses to the in vitro stimulation of L4-MDP-modified syngeneic cells (L4-MDP-self); (b) inoculation of L4-MDP-self into footpads of BCG-primed C3H/HeN mice elicited ample delayed type-hypersensitivity (DTH) responses in vivo as measured by footpad swelling; and (c) BCG-primed mice contained L4-MDP-reactive helper T cell activity which functions to augment the generation of effector T cell responses to cell surface antigens. This crossreactivity between L4-MDP hapten and BCG as measured by the helper T cell activity was applied to enhanced induction of tumor-specific immunity. When BCG-primed C3H/HeN mice were immunized with L4-MDP-modified syngeneic X5563 tumor cells, these mice could generate augmented tumor-specific in vivo protective (tumor neutralizing) immunity as well as in vitro cytotoxic T cell responses. These results indicate the effectiveness of L4-MDP hapten in augmenting tumor-specific immunity. The present approach is discussed in the context of potential advantages of this new hapten for its future application to clinical tumor systems.  相似文献   
3.
Measurement of PO2 in liver using EPR oximetry   总被引:1,自引:0,他引:1  
  相似文献   
4.
Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.  相似文献   
5.
In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, trophoblasts invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. Here, we showed that autophagy, an intracellular bulk degradation system, occurred in extravillous trophoblast (EVT) cells under hypoxia in vitro and in vivo. An enhancement of autophagy was observed in EVTs in early placental tissues, which suffer from physiological hypoxia. The invasion and vascular remodeling under hypoxia were significantly reduced in autophagy-deficient EVT cells compared with wild-type EVT cells. Interestingly, soluble endoglin (sENG), which increased in sera in preeclamptic cases, suppressed EVT invasion by inhibiting autophagy. The sENG-inhibited EVT invasion was recovered by TGFB1 treatment in a dose-dependent manner. A high dose of sENG inhibited the vascular construction by EVT cells and human umbilical vein endothelial cells (HUVECs), meanwhile a low dose of sENG inhibited the replacement of HUVECs by EVT cells. A protein selectively degraded by autophagy, SQSTM1, accumulated in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy. This is the first report showing that impaired autophagy in EVT contributes to the pathophysiology of preeclampsia.  相似文献   
6.
The morphological characteristics of the pectoral fin spine were compared in three species of sturgeon, the Persian sturgeon (Acipenser persicus), the Russian sturgeon (Acipenser gueldenstaedtii), and the Starry sturgeon (Acipenser stellatus), all sampled from the Caspian Sea. On the basis of morphological characters of the pectoral fin spine, 62.2% of the individuals were correctly classified into separate groups. The cluster analysis also divided the three species into two major subgroups. Acipenser persicus and A. gueldenstaedtii were grouped together, suggesting a similar evolutionary basis. Significant morphological heterogeneity in pectoral fin spine characteristics was observed among the three sturgeon species. Principal component analysis identified the largest differences were in the pectoral fin spine size and the angle between distal pectoral fin spine and the horizontal line (A°). The first and second principal components (PC1 and PC2) of all observations accounted for 64.19% and 14.33% of the total variation, respectively. The combination of all analyses showed the relevance of applying pectoral fin spine shape for interspecific distinction of the three species of sturgeons.  相似文献   
7.
8.
9.
Larval dispersal can connect distant subpopulations, with important implications for marine population dynamics and persistence, biodiversity conservation and fisheries management. However, different dispersal pathways may affect the final phenotypes, and thus the performance and fitness of individuals that settle into subpopulations. Using otolith microchemical signatures that are indicative of ‘dispersive’ larvae (oceanic signatures) and ‘non-dispersive’ larvae (coastal signatures), we explore the population-level consequences of dispersal-induced variability in phenotypic mixtures for the common triplefin (a small reef fish). We evaluate lipid concentration and otolith microstructure and find that ‘non-dispersive’ larvae (i) have greater and less variable lipid reserves at settlement (and this variability attenuates at a slower rate), (ii) grow faster after settlement, and (iii) experience similar carry-over benefits of lipid reserves on post-settlement growth relative to ‘dispersive’ larvae. We then explore the consequences of phenotypic mixtures in a metapopulation model with two identical subpopulations replenished by variable contributions of ‘dispersive’ and ‘non-dispersive’ larvae and find that the resulting phenotypic mixtures can have profound effects on the size of the metapopulation. We show that, depending upon the patterns of connectivity, phenotypic mixtures can lead to larger metapopulations, suggesting dispersal-induced demographic heterogeneity may facilitate metapopulation persistence.  相似文献   
10.
Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号