首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C3H/He mice were injected i.v. with heavily X-irradiated syngeneic X5563 tumor cells three times at 4-day intervals. This regimen resulted in the abrogation of the potential to generate X5563 tumor-specific T cell-mediated immunity as induced by i.d. inoculation of viable X5563 tumor cells followed by surgical resection of the tumor, representing the tolerance induction. Although such a tumor-specific tolerant state was long-lasting, the recovery of anti-X5563 effector T cell responses was observed when the above ordinary immunization procedure was performed 6 months after the tolerance induction. The present study investigated whether the recovery from the tolerance can be accelerated by applying a helper-effector T-T cell interaction model in which enhanced anti-X5563 immunity is obtained by priming mice with BCG and by immunizing X5563 tumor cells modified with BCG cross-reactive MDP hapten (designated as L4-MDP) in the presence of anti-L4-MDP helper T cells preinduced with BCG. The results demonstrated that BCG-primed mice which received the tolerance regimen failed to generate anti-X5563 immunity when the ordinary immunization was performed 2 or 3 months after the tolerance induction. In contrast, the immunization of BCG-primed and X5563-tolerant mice with L4-MDP-coupled X5563 tumor cells at comparable timing to that of the ordinary immunization were capable of generating potent X5563-specific in vivo protective T cell-mediated immunity. As control groups, BCG-primed or unprimed tolerant mice did not develop anti-X5563 immunity when immunized with L4-MDP-uncoupled or L4-MDP-coupled tumor cells, respectively. These results indicate that immunization of BCG-primed, tumor-tolerant mice with L4-MDP-modified tumor cells results in accelerated recovery from the tumor tolerance.  相似文献   

2.
Summary Preinduction of potent haptenic muramyl dipeptide (MDP)-reactive helper T cell activity and subsequent immunization with MDP hapten-coupled syngeneic tumor cells resulted in enhanced induction of tumor-specific immunity through T-T cell collaboration between anti-MDP hapten helper T cells and tumor-specific effector T cells. The present study establishes two types of tumor-specific immunotherapy protocols utilizing helper T cells against MDP hapten cross-reactive with Bacillus Calmette Guérin (BCG). In the first model, naive normal C3H/He mice or mice in which MDP hapten-reactive helper T cells had been generated by BCG-sensitization were inoculated i.d. with syngeneic X5563 tumor cells. When both groups of mice were allowed to generate MDP hapten-modified tumor cells in the tumor mass in situ by intratumoral injection of MDP hapten, an appreciable number of growing tumors in the BCG-presensitized but not in the unsensitized group were observed to regress. In the second model, a growing X5563 tumor mass was removed by the surgical resection 9 days after the tumor implantation. Approximately 90% of C3H/He mice receiving such treatment died from tumor metastasis by about 30 days after the tumor resection. However, immunization of mice with MDP hapten-coupled X5563 tumor cells subsequent to the tumor resection resulted in an increased survival rate. Such protection from the tumor metastasis was appreciably stronger when compared to the protection obtained by immunization with MDP hapten-uncoupled tumor cells. The mice surviving in both models were also demonstrated to retain X5563 tumor-specific immunity. These results indicate that the presentation of MDP hapten-modified tumor cells to BCG-sensitized recipients results in potent tumor-specific immunity which contributes to the regression of the primary tumor or inhibition of metastatic tumor growth.This work was supported by a Grant-in-Aid for the Special Project Cancer Bioscience from the Ministry of Education, Science and Culture, Japan  相似文献   

3.
Summary A previous paper has demonstrated that enhanced tumor-specific immunity could be induced by priming mice with Bacillus Calmette Guerin (BCG) and subsequently immunizing them with syngeneic tumor cells modified with BCG-cross-reactive muramyl dipeptide (MDP) hapten [15]. The present study establishes a tumorspecific immunotherapy protocol for a murine chronic leukemia based on the above T-T cell collaboration between antitumor effector T cells and anti-MDP hapten helper T cells induced by BCG priming. BALB/c mice which had been primed to BCG were injected intravenously (i.v.) with viable, syngeneic BCL1 leukemia cells. One week later, these mice were immunized intraperitoneally (i.p.) with unmodified or MDP hapten-modified, 10,000 R X-irradiated BCL1 cells, followed by 4 booster immunizations at 5-day intervals. The administration of unmodified BCL1 tumor cells into BCG-primed mice failed to prevent them from tumor death due to the persistent growth of preinjected BCL1 cells. In contrast, the immunization of BCG-primed, BCL1 leukemia-cell-bearing mice with MDP-modified BCL1 cells resulted in a high growth inhibition of leukemia cells and protection of these mice from death by leukemia. It was also revealed that potent tumorspecific, T-cell-mediated immunity was generated in mice which survived in this immunotherapy model. Thus, these results indicate that administration of MDP hapten-modified, syngeneic leukemia cells into leukemia-bearing mice which have been primed with BCG results in potent tumor-specific, T-cell-mediated immunity attributable to preventing the growth of disseminated leukemic cells.This work was supported by a Grant-in-Aid for the Special Project Cancer-Bioscience from the Ministry of Education, Science, and Culture, Japan Abbreviations used: TATA, tumor-associated transplantation antigens; MDP, muramyl dipeptide; MTP, muramyl tripeptide; BCG, Bacillus Calmette Guerin  相似文献   

4.
Immunization of animals with 1591-RE tumor cells, a highly immunogenic UV-induced epithelia cell tumor from C3H/HeN mice, that were haptenated with trinitrophenol (TNP) leads to protective immunity against a challenge of TNP-haptenated 3152-PRO tumor cells, a progressive highly malignant. MCA-induced fibrosarcoma from syngeneic mice. Animals that rejected TNP-1591-RE and subsequently TNP-3152-PRO tumor cells showed increased tumor-specific resistance to another challenge of 3152-PRO tumor cells, even when these fibrosarcoma cells had not been haptenated with TNP. Induction of protection required the presence of TNP-hapten groups on both 1591-RE and 3152-PRO during the initial immunization, and could be induced by immunization with other haptenated syngeneic highly immunogenic regressor tumor lines. In addition, TNP-haptenated progressor variants of the 1591-RE were ineffective in generating protection, suggesting that the immunogenicity of the haptenated tumor used for the initial immunization was a determining factor in whether or not protective immunity against the highly malignant tumor was later generated. Protection required at least two T cell types: a Lyt-1-2+ T cells, and a Lyt-1+2- T cell that also expressed I-J determinants and was Vicia villosa lectin adherent, suggesting it was not a classical helper T cell. These results suggest that presentation of a hapten by highly immunogenic tumor cells can lead to enhanced protective immunity to poorly immunogenic noncross-reactive tumors that co-express the same hapten, and rejection of these haptenated poorly immunogenic tumors leads to enhanced protection against a subsequent challenge of the same, but not noncross-reactive progressor tumors.  相似文献   

5.
Summary Utilizing vaccinia virus (VV), a tumor-specific immunotherapy model was established in which a growing tumor regressed. C3H/HeN mice were primed with VV after low dose irradiation to generate amplified VV-reactive T cell activities. Then 4 weeks later, the mice were inoculated i. d. with syngeneic MH134 hepatoma cells, and 6 days after the tumor cell inoculation, live VV was injected into the tumor mass 3 times at 2-day intervals. Of 10 mice which had received VV priming and subsequent VV injection into the tumor mass, 8 exhibited complete tumor regression. On the contrary, mice which had received only intratumoral VV injection without VV priming failed to exhibit appreciable tumor regression. Mice whose tumor had completely regressed following the VV immunotherapy were shown to have acquired systemic antitumor immunity, which was confirmed by a challenge with syngeneic tumor cells after immunotherapy. In vitro analysis of these immune mice revealed that potent tumor-specific antibody responses were preferentially induced, but with no detectable antitumor cytotoxic T lymphocyte (CTL) responses. Such a potent tumor-specific immunity was not observed in mice which had received intratumoral VV injection in the absence of VV priming. Thus, the results clearly indicate that tumor regression was accompanied by the concurrent generation of a potent tumor-specific immunity, suggesting that cellular cooperation between VV-reactive T cells and tumor-specific effector cells might be functioning in this VV immunotherapy protocol. Therefore, the present model provides an effective maneuver for tumor-specific immunotherapy. This system is, in principle, applicable to the human situation.  相似文献   

6.
The present study determines the Ly phenotype of T cells mediating tumor cell rejection in vivo and investigates some of cellular mechanisms involved in the in vivo protective immunity. C3H/HeN mice were immunized to syngeneic X5563 plasmacytoma by intradermal (i.d.) inoculation of viable X5563 tumor cells, followed by the surgical resection of the tumor. Spleen cells from these immune mice were fractionated by treatment with anti-Lyt antibodies plus complement, and each Lyt subpopulation was tested for the reconstituting potential of in vivo protective immunity in syngeneic T cell-depleted mice (B cell mice). When C3H/HeN B cell mice were adoptively transferred with Lyt-1-2+ T cells from the above tumor-immunized mice, these B cell mice exhibited an appreciable cytotoxic T lymphocyte (CTL) response to the X5563 tumor, whereas they failed to resist the i.d. challenge of X5563 tumor cells. In contrast, the adoptive transfer of Lyt-1+2- anti-X5563 immune T cells into B cell mice produced complete protection against the subsequent tumor cell challenge. Although no CTL or antibody response against X5563 tumors was detected in the above tumor-resistant B cell mice, these mice were able to retain Lyt-1+2- T cell-mediated delayed-type hypersensitivity (DTH) responses to the X5563 tumor. These results indicate that Lyt-1+2- T cells depleted of the Lyt-2+ T cell subpopulation containing CTL or CTL precursors are effective in in vivo protective immunity, and that these Lyt-1+2- T cells implement their in vivo anti-tumor activity without inducing CTL or antibody responses. The mechanism(s) by which Lyt-1+2- T cells function in vivo for the implementation of tumor-specific immunity is discussed in the context of DTH responses to the tumor-associated antigens and its related Lyt-1+2- T cell-mediated lymphokine production.  相似文献   

7.
Preinduction of potent hapten-reactive helper T cell activity and subsequent immunization with hapten-coupled syngeneic tumor cells result in enhanced induction of tumor-specific immunity through T-T cell collaboration between anti-hapten helper T cells and tumor-specific effector T cells. On the basis of this augmenting mechanism, a tumor-specific immunotherapy protocol was established in which a growing tumor regresses by utilizing a potent trinitrophenyl (TNP)-helper T cell activity. C3H/He mice were allowed to generate the amplified (more potent) TNP-helper T cell activity by skin painting with trinitrochlorobenzene (TNCB) after pretreatment with cyclophosphamide. Five weeks later, the mice were inoculated intradermally with syngeneic transplantable X5563 tumor cells. When TNCB was injected into X5563 tumor mass, an appreciable number of growing tumors, in the only group of C3H/He mice in which the amplified TNP-helper T cell activity had been generated were observed to regress (regressor mice). These regressor mice were shown to have acquired tumor-specific T cell-mediated immunity. Such immunity was more potent than that acquired in mice whose tumor was simply removed by surgical resection. These results indicate that in situ TNP haptenation of the tumor cells in TNP-primed mice can induce the enhanced tumor-specific immunity leading to the regression of a growing tumor. Most importantly, the present study further investigates the applicability of this TNP immunotherapy protocol to an autochthonous tumor system. The results demonstrate that an appreciable percent of growing methylcholanthrene-induced autochthonous tumors regressed by the above TNP immunotherapy protocol. Thus, the present model provides an effective maneuver for tumor-specific immunotherapy in syngeneic transplantable as well as autochthonous tumor systems.  相似文献   

8.
Summary The role of vaccinia virus-reactive helper T cells (Th) in augmenting in vivo generation of antitumor protective immunity and the Ly phenotype mediating the enhanced in vivo tumor immunity were investigated. C3H/HeN mice were inoculated i.p. with viable vaccinia virus to generate vaccinia virus-reactive Th activity. The mice were subsequently immunized i.p. with virus-infected syngeneic X5563 and MH134 tumor cells, and spleen cells from these mice were tested for in vivo tumor neutralizing activity. Immunization of virus-primed mice with virus-uninfected tumor cells and of virus-unprimed mice with virus-infected tumor cells failed to result in in vivo protective immunity. In contrast, spleen cells from mice immunized with virus-infected tumor cells subsequent to virus-priming exhibited potent tumor-specific neutralizing activities. Such an augmented generation of in vivo protective immunity was accompanied by enhanced induction of tumor-specific cytotoxic T lymphocyte (CTL) and antibody activities in X5563 and MH134 tumor systems, respectively. However, analysis of the effector cell type responsible for in vivo tumor neutralization revealed that enhanced in vivo immunity was mediated by Lyt-1+2 T cells in both tumor systems. Moreover, the Lyt-1+2 T cells exerted their function in vivo under conditions in which anti-X5563 tumor-specific CTL or anti-MH134 tumor-specific antibody activity was not detected in recipient mice. These results indicate that augmenting the generation of a tumor-specific Lyt-1+2 T cell population is essential for enhanced tumor-specific immunity in vivo.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

9.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

10.
Defective tumoricidal capacity of macrophages from C3H/HeJ mice   总被引:19,自引:0,他引:19  
Peritoneal macrophages from C3H/HeN mice treated i.p. with T cell mitogens or viable BCG organisms were cytotoxic to syngeneic tumor cells in vitro. Macrophages from endotoxin-unresponsive C3H/HeJ mice treated with BCG or T cell mitogens, however, were not tumoricidal. Furthermore, unlike cells from C3H/HeN mice, macrophages from C3H/HeJ mice could not be activated for tumor cytotoxicity after in vitro treatment with bacterial endotoxins or with lymphokine-rich supernatants. The subnormal induction of cytotoxic macrophages after in vitro or in vivo treatments in C3H/HeJ mice appears to be a highly selective defect. Macrophage responses (yield, phagocytosis, or peroxidase staining) in inflammatory exudates induced by BCG, T cell mitogens, or heterologous serum in C3H/HeJ or C3H/HeN mice were identical. C3H/HeJ macrophages also responded normally in vitor to chemotactic lymphokines. Thus, C3H/HeJ macrophages possess a profound and selective defect in tumoricidal capacity. This defect was not dependent upon exogenous endotoxins. Defective macrophage cytotoxic responses may reflect non-LPS related functions regulated by the LPS gene.  相似文献   

11.
The present study was designed to investigate the generation of trinitrophenyl (TNP)-reactive helper T cell activity potent enough to induce the regression of a syngeneic tumor; this occurs by augmenting antitumor-specific immunity through T-T cell interaction. Mice whose skin was painted with trinitrochlorobenzene (TNCB) exhibited a variety of anti-TNP T cell responses, including delayed-type hypersensitivity (DTH) and cytotoxic T cell responses, as well as helper T cell activity. Pretreatment of C3H/He mice with TNP-conjugated copolymer of D-glutamic acid and lysine (TNP-D-GL) or cyclophosphamide, which have been shown, respectively, to inactivate TNP-specific suppressor T cells or suppressor T cells in general, exhibited a slight or marginal augmentation of DTH and cytotoxic potentials when tested 5 wk after TNCB painting. In contrast, the same pretreatment regimens induced an appreciably amplified generation of anti-TNP helper T cell activity. This amplified TNP-helper T cell activity was demonstrated to enhance cytotoxic responses to antigens other than TNP in an antigen-nonspecific way. In fact, such helper T cells enhanced antitumor CTL responses when co-cultured with spleen cells from syngeneic X5563 plasmacytoma-bearing mice in the presence of TNBS-modified X5563 tumor cells. This amplified TNP-helper cell system was utilized for its immunotherapeutic potential. When TNCB was injected into X5563 tumor mass of syngeneic C3H/He mice in which the amplified TNP-helper T cell activity had been generated, an appreciable number of growing tumors was observed to regress. This contrasted with the low incidence of tumor regression observed in mice in which TNP-helper activity had been induced by TNCB painting without inactivation of suppressors. Thus, the present model provides an effective immunotherapeutic manipulation for eliciting enhanced in vivo tumor regression, and emphasizes a role of helper T cells in augmentation of syngeneic tumor immunity.  相似文献   

12.
In the present study we establish an assay system of tumor growth inhibition with the use of a diffusion chamber and investigate the mechanism by which tumor-specific Lyt-1+2-T cells exhibit their inhibiting effect on tumor cell growth. When a diffusion chamber containing X5563 plasmacytoma cells together with normal syngeneic C3H/HeN spleen cells was implanted in the peritoneal cavity of C3H/HeN mice, these tumor cells continued to proliferate at least 7 to 9 days. In contrast, spleen cells from C3H/HeN mice that had acquired X5563-specific immunity by intradermal (i.d.) inoculation of viable tumor cells, followed by surgical resection of the tumor, exhibited an appreciable inhibitory effect on the growth of X5563 tumor cells admixed in the chamber. This antitumor effect was mediated by Lyt-1+2-T cells and was tumor-specific, because the growth of X5563 or another syngeneic MH134 hepatoma cells was inhibited by spleen cells from C3H/HeN mice immunized to the respective tumor cell types. Most important, these tumor-specific Lyt-1+2-T cells lost their antitumor activity by depleting an adherent cell population contained in spleen cells, indicating that adherent cells are required for the Lyt-1+2-T cell-mediated antitumor effect. This was substantiated by the fact that immune spleen cells depleted of adherent cells could regain their tumor-inhibiting effect when normal spleen cells were added back as an adherent cell source, or more directly by adding back a splenic or peritoneal resident adherent cell population. These results indicate that tumor-specific Lyt-1+2-T cells mediate the tumor growth inhibition and that their antitumor effect depends on the coexistence of an adherent cell population.  相似文献   

13.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

14.
The present study investigates the augmenting effect of tuberculin- (PPD) reactive amplifier T cells on the induction of syngeneic tumor immunity. PPD-reactive helper (amplifier) T cell activity was generated in C3H/HeJ mice by appropriate immunization with heat-killed Mycobacterium (Tbc). Immunization of these Tbc-primed mice with PPD-coupled syngeneic X5563 tumor cells led to augmented generation of in vivo tumor-neutralizing activity contingent on the presence of PPD-reactive amplifier T cell activity. Splenic T cells from these mice exhibited potent tumor-neutralizing activity using Winn's assay, whereas spleen cells from mice not primed with Tbc before PPD-X5563 immunization failed to neutralize viable X5563 tumor cells. After establishing that the neutralizing activity was tumor specific and mediated by T cells, the applicability of this augmentation of tumor-specific immunity to an immunotherapy model was explored. Immunization with PPD-X5563 in the early stages of the tumor-bearing state induced potent anti-tumor activity sufficient to reject the growing tumor. Pretreatment of mice with cyclophosphamide or light x-irradiation (250 R), procedures that eliminate suppressor cell activity nonspecifically, before priming with Tbc further potentiated the anti-tumor activity under these conditions. Thus, the present study elucidates the augmenting effect of PPD-reactive amplifier T cells in the induction of tumor-specific immunity and provides an effective method of immunotherapy in tumor-bearing animals.  相似文献   

15.
Mice bearing established syngeneic tumors fail to reject them when immunized according to protocols based on optimal conditions for BCG potentiation of specific delayed-type hypersensitivity (DTH) and antitumor immunity. Serum factors from mice bearing either the poorly immunogenic mastocytoma, P815 (MA), or the more antigenic sarcoma, Meth A, have been shown to depress both DTH and antitumor immunity. This report demonstrates that lymphoid cells adoptively transferred from these tumor-bearing hosts also can suppress the efferent and afferent phases of DTH to tumor-specific antigens in both BCG-primed and unprimed syngeneic hosts. Suppressor cells (SC) were detected in spleen, thymus, and lymph nodes draining the tumor site, but not in distant superficial lymph nodes. Maximal suppressor activity apeared 6 days after tumor implantation and waned by 18 days. Suppression of the afferent phase of both the BCG-primed and unprimed responses was antigen specific; suppression of the efferent phase of the BCG-primed response was also specific but SC could partially suppress the unprimed responses to sheep red blood cells (SRBC). Amputation of 6-day-old tumors resulted in the disappearance of splenic SC within 2 days but did not affect SC in draining lymph nodes. SC suppressed DTH in a dose-dependent manner but even the highest doses tested did not totally eliminate the response. Depression of the peak DTH reaction was not accompanied by significant abrogation of antitumor activity. If, however, SC were transferred during the ongoing antitumor response, immunity was partially suppressed. Efferentphase SC were sensitive to treatment with anti-Thy 1 sera and complement but were unaffected by B-cell depletion.  相似文献   

16.
Summary C3H/He mice were inoculated i.v. with 106 heavily X-irradiated syngeneic X5563 plasmacytoma cells 3 times at 4 day intervals. When these mice received an appropriate immunization procedure consisting of i. d. inoculation of viable tumor cells plus the surgical resection of the tumor which enables i.v. nonpresensitized mice to produce anti-X5563 immunity, they failed to develop tumor-specific immunity. This was demonstrated by the abrogation in potential of spleen and lymph node cells to generate in vivo protective immunity. In contrast, the tumor mass from X5563 tumor-bearing mice which had received the i.v. presensitization contained comparable anti-X5563 tumor neutralizing activity to that obtained from the tumor mass from nonpresensitized, X5563 tumor-bearing mice. Such an in vivo protective immunity was revealed to be mediated by tumor-specific T cells. These results demonstrate the differential generation and antitumor capability of tumor infiltrating T cells and T cells in lymphoid organs from mice which are in the tumor-specific tolerant state. The results are discussed in the context of potential utilization of tumor infiltrating in vivo protective T cells to enhance the local tumor-specific immunity in tumor-specific tolerant mice.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

17.
Mouse strains of H-2b haplotype exhibit much weaker cytotoxic T lymphocyte (CTL) responses to haptens reactive with amino groups of cell surface (NH2-reactive haptens) compared with H-2k strains. However, H-2b strains can generate high CTL responses to haptens reactive with sulfhydryl groups of cell surface (SH-reactive haptens). The present study investigates the role of haptenic structure and hapten-cell surface reaction patterns in influencing the generation of the T cell specificity as well as the H-2-linked genetic control. CTL and helper T cell responses were generated against two structurally related haptens, N-iodoacetyl-N'-(5-sulfonic-1-naphthyl) ethylene-diamine (SH-reactive AEDANS; AED-SH) and 5-sulfo-1-naphthoxy acetic acid N-hydroxysuccinimide ester (NH2-reactive form of AEDANS; AED-NH2) by immunizing C57BL/6N (H-2b) mice with these hapten-modified syngeneic spleen cells. Spleen cells from primed C57BL/6N mice generated strong CTL and helper T cell activities upon in vitro restimulation with the respective hapten-modified self. The generation of potent anti-AED-NH2 CTL and helper T cell responses in C57BL/6N mice sharply contrasted with the failure of NH2-reactive haptens studied thus far to generate strong anti-hapten cytotoxic responses in H-2b mice. Antibodies induced against the above two haptens exhibited extensive cross-reactivity detected by hemagglutination, whereas CTL and helper T cells clearly discriminated the structural difference between AED-NH2 and AED-SH haptens. The hapten specificity in T cell recognition was also observed between AED-NH2 and trinitrophenyl (TNP) haptens, which were demonstrated to functionally modify similar cell surface sites. These results indicate that hapten epitope structure and hapten-cell membrane conjugation patterns influence the generation of H-2-linked genetic control and T cell specificity in anti-hapten self cytotoxic as well as helper T cell responses.  相似文献   

18.
Summary The present study investigates the potential of bone marrow cells from mice tolerant to tumor antigens to repopulate tumor-specific effector T cells. C3H/He mice were inoculated i.v. with 106 10000 R X-irradiated syngeneic X5563 plasmacytoma tumor cells three times at 4-day intervals. This regimen abrogated the ability of spleen cells from these mice to develop anti-X5563 cytotoxic and in vivo protective (tumor-neutralizing) T cell-mediated immunity as induced by i.d. inoculation of viable X5563 cells followed by surgical resection of the tumor. Since such suppression was induced in a tumor-specific way, this represented a state of antitumor tolerance. When bone marrow cells from normal or X5563-tolerant mice were transferred i.v. into 950 R X-irradiated syngeneic C3H/He mice, both groups of recipient mice generated anti-X5563 tumor immunity over a similar time course and to almost the same degree. Anti-X5563 tumor immunity induced in (C3H/He×C57BL/6) F1 mice which had been transferred with bone marrow cells from normal or X5563-tolerant C3H/He mice were mediated by T cells expressing the Ly phenotype of C3H/He, but not of C57BL/6, excluding the possibility that the antitumor effector cells were derived from recipient mice. It was also demonstrated that C3H/He mice which had been reconstituted with normal marrow were rendered tolerant when the tolerance regimen was started 7 weeks, but not 1 week after the bone marrow reconstitution. These results indicate that bone marrow cells from antitumor tolerant mice are not rendered tolerant to the tumor but can provide the potential to repopulate antitumor CTL and in vivo protective effector T cells.This work was supported by the Special Project Cancer-Bioscience from the Ministry of Education, Science and Culture, Japan Abbreviations used: MHC, major histocompatibility complex; CTL, cytotoxic T lymphocytes; TNP, trinitrophenyl; C, complement; TNBS; trinitrobenzene sulfonate; MMC, mitomycin C  相似文献   

19.
Transplantation of allogeneic hematopoietic stem cells with or without immunocompetent lymphocytes has proved a successful strategy in the treatment of hematological malignancies. We have recently shown that this approach can also cure mouse prostate cancer, provided that it is combined with tumor-specific vaccination. Whether the response to alloantigens acts by providing helper function to enhance vaccine-specific responses or in other ways impinges on vaccine immunogenicity remains to be clarified, and this question is of clinical relevance. In this study, we have addressed this issue by comparing the immunogenicity of dendritic cells pulsed with a peptide derived from a tumor/viral model Ag in recipients of donor cells either syngeneic to the host or differing for either Y-encoded or multiple minor H antigens. We report that vaccination elicits comparable proliferation and differentiation of peptide-specific CD8(+) T cells despite concurrent expansion and differentiation of minor H antigen-specific IFN-γ effector T cells. Depletion of alloreactive CD4(+) T cells reduced alloreactivity but not vaccine-induced CD8(+) T cell priming, suggesting that alloresponses do not provide helper functions in peripheral lymphoid tissues. Vaccine-mediated T cell priming was also preserved in the case of multiple minor H antigen disparities, prone to graft-versus-host disease. Thus, in the context of nonmyeloablative allotransplantation aimed at restoring an effective tumor-specific T cell repertoire, minor H antigen-specific T cells do not interfere with vaccine-induced T cell priming, supporting the notion that posttransplant vaccination is a valuable strategy to boost tumor and pathogen-specific protective immunity.  相似文献   

20.
The cultured cells prepared from the spleens and peritoneal exudate cells of the C3H/HeJ strain of mice produce very little or no interferon (IFN) by stimulation of bacterial lipopolysaccharide (LPS). However, the cells taken from LPS-non-responder C3H/HeJ mice which had been infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) prior to the experiment were capable of producing IFN in culture in the presence of LPS. The peritoneal exudate cells of BCG-primed C3H/HeJ mice were separated into adherent cell and nonadherent cell populations by their adhesiveness to plastic culture dishes. IFN production required the presence of both these cell populations in the same culture, and the IFN activities produced were mainly IFN-gamma. The cultures with nonadherent cells and fixed adherent cells still produced IFN, but the cell cultures reconstituted with the BCG-primed cell population and unprimed cell population produce little if any IFN-gamma. Moreover, when both of the populations were cultured in Marbrook culture vessels separated by a membrane filter, the cultures produced very little or no IFN-gamma. These results indicate that there is a mechanism of IFN-gamma induction by LPS which requires the direct contact between adherent cells and nonadherent cells without the participation of any soluble factor(s) from the adherent cells. The producer cells were mainly in the nonadherent cell population. Previous treatment of nonadherent cells with anti-Thy-1.2 antibody, anti-Lyt-1.1 antibody, anti-L3T4 antibody, or anti-asialo-GM1 antibody and complement diminished the ability of the cells for LPS-induced IFN production with the help of adherent cells. Therefore, it is concluded that both T cells (presumably L3T4+T cells) and asialo-GM1+ natural killer cells in the BCG-primed C3H/HeJ cell cultures produced IFN-gamma in the presence of LPS, and the production was supported by the function of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号