首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1991年   1篇
  1977年   1篇
排序方式: 共有59条查询结果,搜索用时 0 毫秒
1.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
2.
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.  相似文献   
3.
Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.  相似文献   
4.
5.
S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7–24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington''s disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs.  相似文献   
6.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   
7.
How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.  相似文献   
8.
Most eukaryotes possess the highly-conserved enzyme methionine adenosyltransferase (MAT) that produces S-adenosyl-l-methionine, a molecule essential to a variety of cellular processes. However, a recent study revealed that genomes of a very few eukaryote lineages encode a highly divergent type of MAT (called MATX), instead of the canonical MAT enzyme. Since MATX-containing eukaryotes are phylogenetically interspersed with MAT-containing organisms, it is likely that the MATX gene was spread into the MAT-containing groups via multiple eukaryote-to-eukaryote lateral gene transfer events. Here, we further investigate the evolutionary history of these gene families by vastly increasing the sampling of species containing MAT (22 new taxa) and MATX (8 new taxa). Our expanded analyses reveal the first example of lateral transfer of a MAT gene between the pelagophycean alga Aureococcus anophagefferens and a cryptomonad. The increased MATX sampling also provided new insights into the evolution of MATX. Specifically, our MATX phylogeny robustly grouped the haptophyte homologues with the Aureococcus homologue to the exclusion of the diatom homologues, suggesting a transfer of the MATX gene between haptophytes and pelagophytes. Various scenarios of MAT and MATX gene family evolution in diatoms are re-evaluated in light of the new data.  相似文献   
9.
10.
Postsynaptic density 95 (PSD-95/SAP-90) is a membrane associated guanylate kinase (GK) PDZ protein that scaffolds glutamate receptors and associated signaling networks at excitatory synapses. Affinity chromatography identifies cypin as a major PSD-95-binding protein in brain extracts. Cypin is homologous to a family of hydrolytic bacterial enzymes and shares some similarity with collapsin response mediator protein (CRMP), a cytoplasmic mediator of semaphorin III signalling. Cypin is discretely expressed in neurons and is polarized to basal membranes in intestinal epithelial cells. Overexpression of cypin in hippocampal neurons specifically perturbs postsynaptic trafficking of PSD-95 and SAP-102, an effect not produced by overexpression of other PDZ ligands. In fact, PSD-95 can induce postsynaptic clustering of an otherwise diffusely localized K+ channel, Kv1.4. By regulating postsynaptic protein sorting, cypin may influence synaptic development and plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号