首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   6篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2003年   4篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1979年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Many reports have stated that flagellated protists in termite guts harbour ectosymbiotic spirochetes on their cell surface. In this study, we describe another bristle-like ectosymbiont affiliated with the order Bacteroidales. The 16S rRNA phylotype Rs-N74 predominates among Bacteroidales clones obtained from the gut of the termite Reticulitermes speratus. An Rs-N74 phylotype-specific probe was designed in this study and used for detection of the corresponding bacteria in the gut by fluorescence in situ hybridization (FISH) analysis. Surprisingly, the signals were detected specifically from the bristle-like 'appendages' of various flagellate species belonging to the genus Dinenympha; these 'appendages' had been believed to be spirochetal ectosymbionts or structures of the protists. The Rs-N74 bacteria attached to the cell surface of the protists by a tip and coexisted with the spirochetal ectosymbionts. An electron micrograph revealed their morphology to be similar to a typical Bacteroidales bacterium. This bacterium is proposed to represent a novel genus and species, 'Candidatus Symbiothrix dinenymphae', phylogenetically affiliated with a cluster consisting exclusively of uncultured strains from termite guts. A Bacteroidales-specific probe for FISH further revealed that this type of symbiosis exists also in various other protists, including parabasalids and oxymonads, and is widespread in termite guts.  相似文献   
2.
Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.  相似文献   
3.
Aphids belonging to the three genera Tuberaphis, Glyphinaphis, and Cerataphis contain extracellular fungal symbionts that resemble endocellular yeast-like symbionts of planthoppers. Whereas the symbiont of planthoppers has a uricase (urate oxidase; EC 1.7.3.3) and recycles uric acid that the host stores, no uric acid was found in Tuberaphis styraci, and its fungal symbiont did not exhibit the uricase activity. However, the fungal symbionts of these aphids, including that of T. styraci, were shown to have putative uricase genes, or pseudogenes, for the uricase. Sequence analysis of these genes revealed that deleterious mutations occurred independently on each lineage of Glyphinaphis and Tuberaphis, while no such mutation was found in the lineage of Cerataphis. These genes were almost identical to those cloned from the symbionts of planthoppers, though the host aphids and planthoppers are phylogenetically distant. To estimate the phylogenetic relationship in detail between the fungal symbionts of aphids and those of planthoppers, a gene tree was constructed based on the sequences of the uricase genes including their flanking regions. As a result, the symbionts of planthoppers and Tuberaphis aphids formed a sister group against those of Glyphinaphis and Cerataphis aphids with high bootstrap confidence levels, which strongly suggests that symbionts have been horizontally transferred from the aphids' lineage to the planthoppers'. Received: 29 March 2000 / Accepted: 31 May 2000  相似文献   
4.
Bacterial attachments to nearly the entire surface of flagellated protists in the guts of termites and the wood-feeding cockroach Cryptocercus are often observed. Based on the polymerase chain reaction-amplified 16S rRNA gene sequences, we investigated the phylogenetic relationships of the rod-shaped, attached bacteria (ectosymbionts) of several protist species from five host taxa and confirmed their identity by fluorescence in situ hybridizations. These ectosymbionts are affiliated with the order Bacteroidales but formed three distinct lineages, each of which may represent novel bacterial genera. One lineage consisted of the closely related ectosymbionts of two species of the protist genus Devescovina (Cristamonadida). The second lineage comprised three phylotypes identified from the protist Streblomastix sp. (Oxymonadida). The third lineage included ectosymbionts of the three protist genera Hoplonympha, Barbulanympha and Urinympha in the family Hoplonymphidae (Trichonymphida). The ultrastructural observations indicated that these rod-shaped ectosymbionts share morphological similarities of their cell walls and their point of attachment with the protist but differ in shape. Elongated forms of the ectosymbionts appeared in all the three lineages. The protist cells Streblomastix sp. and Hoplonympha sp. display deep furrows and vane-like structures, but these impressive structures are probably evolutionarily convergent because both the host protists and their ectosymbionts are distantly related.  相似文献   
5.
MFR, a Putative Receptor Mediating the Fusion of Macrophages   总被引:17,自引:0,他引:17       下载免费PDF全文
We had previously identified a macrophage surface protein whose expression is highly induced, transient, and specific, as it is restricted to actively fusing macrophages in vitro and in vivo. This protein is recognized by monoclonal antibodies that block macrophage fusion. We have now purified this protein and cloned its corresponding cDNA. This protein belongs to the superfamily of immunoglobulins and is similar to immune antigen receptors such as the T-cell receptor, B-cell receptor, and viral receptors such as CD4. We have therefore named this protein macrophage fusion receptor (MFR). We show that the extracellular domain of MFR prevents fusion of macrophages in vitro and therefore propose that MFR belongs to the fusion machinery of macrophages. MFR is identical to SHPS-1 and BIT and is a homologue of P84, SIRPα, and MyD-1, all of which have been recently cloned and implicated in cell signaling and cell-cell interaction events.  相似文献   
6.
大鼠肺内NOS之分布及缺氧对其活性的影响   总被引:5,自引:0,他引:5  
本文以组织化学方法对大鼠肺内一氧化氮合酶(NOS)进行定位研究,并观察了不同时间(8小时~28天)缺氧时肺内NOS活性的变化。结果显示:①正常大鼠各级支气管、肺泡管和肺泡囊上皮细胞呈NOS强阳性反应;肺血管内膜呈NOS阳性反应。②缺氧8小时,肺血管内膜NOS阳性反应开始降低,并缺氧时间越长,NOS阳性反应越低、③缺氧14天时,肺泡间质和肺血管周围炎性细胞呈NOS阳性反应;缺氧28天时,炎性细胞NOS阳性反应增强。④缺氧对支气管、肺泡管和肺泡囊上皮细胞NOS的活性无明显影响。从而提示一氧化氮不仅对肺具有一定的生理学作用,而且可能参与缺氧时肺的某些病理学过程。  相似文献   
7.
Immunohistochemistry for neuron-specific nuclear protein (NeuN), caspase-3, calcitonin gene-related peptide (CGRP), and calcium-binding proteins was performed on the trigeminal ganglion (TG) in wild type and Brn-3a knockout mice at embryonic days 12.5–16.5 (E12.5–E16.5). In Brn-3a knockout mice, the number of NeuN-immunoreactive (ir) neuron profiles increased at E14.5 (40.0% increase) and decreased at E16.5 (28.3% reduction) compared to wild type mice. Caspase-3-ir neuron profiles were abundant in the TG of wild type mice at E12.5–E16.5. However, the loss of Brn-3a decreased the number of caspase-3-ir neuron profiles at E12.5 (69.7% reduction) and E14.5 (51.7% reduction). At E16.5, the distribution of caspase-3-ir neuron profiles was barely affected by the deficiency. CGRP-ir neuron profiles were observed in the TG of wild type mice but not knockout mice at E12.5. At E14.5 and E16.5, CGRP-ir neuron profiles were abundant in both wild type and knockout mice. Calbindin D-28 k (CB)-ir neuron profiles decreased in the TG of mutant mice at E12.5 compared to wild type mice (56.4% reduction). At E14.5, however, Brn-3a deficiency transiently increased CB-ir neuron profiles (169.4% increase as compared to wild type mice). Calretinin (CR)-ir neuron profiles could not be detected in the TG of wild type mice at E12.5–16.5. However, numerous CR-ir neuron profiles transiently appeared in the knockout mouse at E14.5. Parvalbumin (PV)-ir neurons appeared in wild type and knockout mice at E14.5. At this stage, the number of large (>50 μm2) PV-ir neuron profiles in knockout mice was fewer than that in wild type mice. The number and cell size of PV-ir neuron profiles were barely affected by the deficiency at E16.5. The present study indicates that the loss of Brn-3a causes increase of TG neurons at E14.5 and decrease of TG neurons at E16.5. It is also suggested that Brn-3a deficiency affects the number and cell size of CGRP- and calcium-binding protein-containing neurons at E12.5 and E14.5. Caspase-3-dependent cell death of CB- and CR-ir neurons may be suppressed by the deficiency at E14.5.  相似文献   
8.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   
9.
The candidate phylum 'Termite Group 1' (TG1) of bacteria, which is abundant in termite guts but has no culturable representative, was investigated with respect to the in situ localization, distribution, and diversity. Based on the 16S rRNA gene sequence analyses and FISH in termite guts, a number of lineages of TG1 members were identified as endosymbionts of a variety of gut flagellated protists from the orders Trichonymphida, Cristamonadida, and Oxymonadida that are mostly unique to termites. However, the survey in various environments using specific PCR primers revealed that TG1 members were also present in termites, a cockroach, and the bovine rumen that typically lack these protist orders. Most of the TG1 members from gut flagellates, termites, cockroaches, and the rumen formed a monophyletic subcluster that showed a shallow branching pattern in the phylogenetic tree, suggesting their recent diversification. Although endosymbionts of the same protist genera tended to be closely related, the endosymbiont lineages were often independent of the higher level classifications of their host protist and were dispersed in the phylogenetic tree. It appears that their cospeciation is not the sole rule for the diversification of TG1 members of endosymbionts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号