首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   50篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   18篇
  2014年   22篇
  2013年   21篇
  2012年   39篇
  2011年   37篇
  2010年   10篇
  2009年   17篇
  2008年   24篇
  2007年   34篇
  2006年   27篇
  2005年   26篇
  2004年   34篇
  2003年   17篇
  2002年   21篇
  2001年   19篇
  2000年   13篇
  1999年   16篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1992年   12篇
  1991年   17篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   8篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有510条查询结果,搜索用时 46 毫秒
1.
2.
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis‐SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood‐based biomarker studies.  相似文献   
3.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
4.
5.
6.
The amount of sample available for clinical and biological proteomic research is often limited and thus significantly restricts clinical and translational research. Recently, we have integrated pressure cycling technology (PCT) assisted sample preparation and SWATH‐MS to perform reproducible proteomic quantification of biopsy‐level tissue samples. Here, we further evaluated the minimal sample requirement of the PCT‐SWATH method using various types of samples, including cultured cells (HeLa, K562, and U251, 500 000 to 50 000 cells) and tissue samples (mouse liver, heart, brain, and human kidney, 3–0.2 mg). The data show that as few as 50 000 human cells and 0.2–0.5 mg of wet mouse and human tissues produced peptide samples sufficient for multiple SWATH‐MS analyses at optimal sample load applied to the system. Generally, the reproducibility of the method increased with decreasing tissue sample amounts. The SWATH maps acquired from peptides derived from samples of varying sizes were essentially identical based on the number, type, and quantity of identified peptides. In conclusion, we determined the minimal sample required for optimal PCT‐SWATH analyses, and found smaller sample size achieved higher quantitative accuracy.  相似文献   
7.

Motivation

In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size.

Results

Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data.

Availability

Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.  相似文献   
8.
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.  相似文献   
9.
Nutrient sensing and coordination of metabolic pathways are crucial functions for all living cells, but details of the coordination under different environmental conditions remain elusive. We therefore undertook a systems biology approach to investigate the interactions between the Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that Snf1 regulates a much broader range of biological processes compared with TORC1 under both glucose‐ and ammonium‐limited conditions. We also find that Snf1 has a role in upregulating the NADP+‐dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition, and therefore may also have a role in ammonium assimilation and amino‐acid biosynthesis, which can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism, likely through modulating the peroxisome and β‐oxidation. Finally, we conclude that direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient‐limited conditions and propose that TORC1 is repressed in a manner that is independent of Snf1.  相似文献   
10.
A yeast membrane protein was isolated by its binding to tRNA Sepharose column. The 45 kDa protein shares characteristics with rat liver nuclear pore proteins in having reactivity with a monoclonal antibody (RL1) raised against rat liver nuclear pore proteins and by the binding of wheat germ agglutinin (WGA), indicating the presence of N-acetylglucosamine (GlcNAc) moieties. Immunofluorescence microscopy and cell fractionation experiments indicate that the protein is located in the nuclear envelope and the endoplasmic reticulum of the cell. The gene for the 45 kDa protein was cloned using degenerate oligonucleotides derived from the N-terminal protein sequence and confirmed by internal peptide sequences. The gene was named WBP1. The protein coding sequence of the WBP1 gene reveals an ER entry signal peptide and a C-terminal membrane spanning domain. Topological studies indicate that the C-terminus of the protein is located in the cytoplasm. The cytoplasmic tail of the protein contains the K-K-X-X signal known to be sufficient for retention of transmembrane proteins in higher eukaryotic cells. Gene disruption experiments show that the 45 kDa protein is essential for the vegetative life cycle of the yeast cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号