首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Homozygous haplotype deficiency reveals deleterious mutations compromising reproductive and rearing success in cattle
Authors:Hubert Pausch  Hermann Schwarzenbacher  Johann Burgstaller  Krzysztof Flisikowski  Christine Wurmser  Sandra Jansen  Simone Jung  Angelika Schnieke  Thomas Wittek  Ruedi Fries
Institution:.Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354 Freising, Germany ;.ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria ;.Clinic for Ruminants, University of Veterinary Medicine Vienna, 1210 Vienna, Austria ;.Lehrstuhl fuer Biotechnologie der Nutztiere, Technische Universitaet Muenchen, 85354 Freising, Germany
Abstract:

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.
Keywords:SLC2A2  SUGT1  Homozygous haplotype deficiency  Fanconi-Bickel syndrome  Embryonic lethality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号