首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2015年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 296 毫秒
1
1.
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.  相似文献   
2.
Cerebrospinal fluid (CSF) α‐synuclein (ASYN) levels are emerging as a possible biomarker in a number of neurodegenerative conditions; however, there has been little study of such levels in demyelinating conditions with neurodegeneration such as multiple sclerosis (MS). In this study, we aimed to assess CSF ASYN levels in MS spectrum [clinically isolated syndrome (CIS) and MS] patients and compare them to those obtained in control subjects with benign neurological conditions (BNC). We used a recently developed, ultra‐sensitive sandwich enzyme‐linked immunosorbent assay to measure and compare CSF ASYN levels in three categories of subjects: BNC (n = 38), CIS (n = 36) and MS [Relapsing Remitting (RRMS, n = 22) and Primary Progressive (PPMS, n = 15)]. We also performed secondary analyses, including relationship of CSF ASYN levels to aging, gender, presence of CSF oligoclonal bands (OB) and gadolinium (Gd)‐enhancing demyelinating lesions on T1‐weighted MRIs. CSF ASYN levels were found to be significantly lower in the CIS (78.2 ± 7.5 pg/mL), RRMS (76.8 ± 5.1 pg/mL), and PPMS (76.3 ± 6.7 pg/mL) groups compared to the BNC (125.7 ± 13.6 pg/mL) group. Secondary analyses did not reveal additional correlations. Our results suggest that in a cohort of CIS and MS patients, CSF ASYN levels are decreased, thus providing another possible link between MS and neurodegeneration. Future studies will need to be performed to confirm and extend these findings, to lead to a fuller understanding of the possible biological link between ASYN and MS.

  相似文献   

3.
Transforming growth factor beta (TGF-β) has a crucial role in the differentiation of ectodermal cells to neural or epidermal precursors. TGF-β and bone morphogenetic protein molecules (BMPs) are involved in many developmental processes, including cell proliferation and differentiation, apoptosis, mitotic arrest and intercellular interactions during morphogenesis. Additionally, the failure of central thymic tolerance mechanisms, leading to T cells with a skewed autoreactive response, is being described as a contributor in inflammatory processes in autoimmune diseases such as multiple sclerosis. Since TGF-β and BMP proteins are crucial for the development of the neural system and the thymus, as well as for the differentiation of T cells, it is essential to further investigate their role in the pathophysiology of this disorder by using references from embryonic experimental research. Available literature in the TGF/BMP signalling cascade, mostly during embryonic development of the nervous system is being reviewed. An attempt is made to further elucidate a potential role of TGF/BMP signalling in the pathophysiology of MS. During demyelination, BMP signaling, through various molecular mechanisms, directs the development of the adult neural stem cell in the astrocyte rather than the oligodendrocyte direction, therefore inhibiting the repair process. Further understanding of the above relationships could lead to the development of potentially efficient therapies for MS in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号