首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2009年   2篇
  2006年   2篇
  2002年   1篇
  1995年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Plant and Soil - Soil respiration (Rs) is a major pathway for carbon release to the atmosphere. We explored variability in dryland Rs response to rainfall pulses at multiple levels of spatial...  相似文献   
2.
3.
In European beech forests windstorms often create canopy gaps and change the level of incident light, soil moisture and nutrient availability on the forest floor. Understanding the interrelations between gap size and environmental change, and the effects these have on regeneration processes is a prerequisite for developing techniques of nature-based forestry. The aims of this study were to investigate the effects of gap size on the resulting spatial distributions of key abiotic environmental variables (light and soil moisture) in gaps, and to study how light and soil moisture affect the abundance and distribution of herb layer species. To do this we used eight artificially created gaps – three large (diameter: 35–40 m) and five small (diameter: 10–15 m) – in a mesotrophic submontane beech forest. Data on species’ importance and substrate types were collected in systematically distributed 1 m×1 m quadrats before gap creation and on four occasions during the next two growing seasons. Hemispherical photographs were taken and analysed to estimate relative light intensity. Soil moisture was measured by frequency domain and capacitance probes. It was found that gap size had a profound effect on the environmental variables measured. While relative light intensity values in small gaps did not reach those in large gaps, soil moisture levels did reach similar maximum values in gap centres regardless of gap size. Richness, composition and total cover of herbaceous vegetation were different in small versus large gaps. Much of this difference was attributed to the presence of specific relative light intensities and also to the increased amount of available soil moisture in gaps. Species were differently affected by the combined effects of light and soil moisture, as well as by differences in available substrates. All this resulted in species-specific distribution patterns within gaps.  相似文献   
4.
Water retention characteristics, rainfall, throughfall and soil water content dynamics were investigated in a low mountain area to compare a forest and a grassland. The soil water retention curve of the topsoil has similar shape in both studied areas, however that of the deeper soil layer shows more difference. We determined the precipitation depth, duration and intensity values of rainfall events. The relationship between rainfall and throughfall depth was described in linear regressions. Interception was calculated as the difference between rainfall and throughfall plus stemflow, assuming stemflow to be 3% of rainfall. Soil water content dynamics show a similar trend in the two vegetation types but the drying is more intensive in the forest in the soil layers deeper than 20 cm during the growing-season.  相似文献   
5.
Repetitive acoustic stimuli elicit steady-state response (SSR) in the gamma-band both in humans and in mammals. Our aim was to investigate changes of the spontaneous gamma activity and the SSR in the auditory cortex of cats in the background of an instrumental conditioning situation. Epidural electrodes were chronically implanted above the auditory neocortex. The presentation rate of the clicks varied between 20 and 65/s. Spontaneous EEG and SSR were collected in three behavioral states: in an indifferent environment, in the instrumental cage while the cat was waiting for the light CS, and when she stepped on the pedal and was waiting for the meat reward. Using different repetition rate clicks we determined which stimulus rate elicited the largest SSR in these three situations. In quiet animal the highest SSR appeared at 28-30/s. Before and during the CS the optimal stimulus rate shifted to 32-38/s. The frequency of the spontaneous gamma activity changed in parallel way depending on the situation. We conclude that both the SSR and the spontaneous gamma activity reflect resonant activity of the same neuronal circuit of the auditory cortex, and it is modulated by the motivational state of the animal.  相似文献   
6.
Soil moisture flux to root surface is considered the main determining factor of the transpiration intensity of plants. This assumption is valid not only in optimal plant physiological conditions without any physical barrier for the evaporation from the leaves, but in climatic drought as well, when high usable soil water amount cannot supply the evapo-transpiration intensity of plant. A new algorithm we built up describing the plant adaptation in climatic drought when stoma’s closure and reduction of plant’s potential evapo-transpiration (PET) starts. The adaptation algorithm of Doorenbos et al. (1978) is developed further defining that soil moisture content initiating the stomata’s closure. The critical soil moisture content is varying according to the PET, and drought tolerance of plant. If soil moisture content is less than the critical one, the plant evapo-transpiration (ET) can be highly different in the drought tolerance plant groups. The new drought tolerance algorithm is applied to maize field plots on chernozem soil of the experimental station of the Debrecen University, in East Hungary. Simulated soil water storages are compared to measured ones of a field plot treatment in five consecutive years. The soil moisture content profiles are measured with a BR-150 capacitance probe (Andrén et al. 1991). Differences between measured and simulated soil water storages are not significant in 2003. Simulations indicate low soil water storages in autumn of 2006, and in the first half of 2007 predicting the low maize production realized in 2007. The new plant adaptation algorithm can be used for a climate and soil moisture content sensitive irrigation control as well. The maize production is an illustrative biohydrological example of water flow through the soil-plant-atmosphere continuum.  相似文献   
7.
The applicability of root electrical capacitance (EC) measurement for in situ investigation of root activity and drought tolerance was tested in soybean cultivars. Well-watered and drought-stressed plants were grown in pots with repeated EC measurements, followed terminally by harvest to determine root dry mass (RDM), shoot dry mass (SDM), root/shoot ratio (RSR) and leaf area (LA). EC measurement showed the cultivar differences in root growth and biomass production. EC increased till the beginning of flowering, then became nearly constant. Terminal EC was highly correlated with RDM for non-stressed (R 2 = 0.844) and stressed plants (R 2 = 0.936). Drought reduced the EC of cultivars by 28.8–50.5 %, consistently with the corresponding changes of SDM (25.5–49.1 %) and LA (23.6–51.5 %), but considerably exceeded the loss of RDM (12.6–47.3 %) in some cultivars. The reason is drought increased the RSR (by 3.9–21.9 %), leading to decreased water uptake, and thus EC per unit of RDM. This was confirmed by the significantly decreased slope of EC–RDM regression line from 0.437 to 0.317 nF g?1 RDM calculated for well-watered and drought-stressed plants, respectively. As EC referred to root uptake activity, it was better indicator of the actual root status than RDM. EC measurement was adequate for monitoring the cultivar-specific differences in root growth and for estimation of biomass loss caused by drought. By supplementing the conventional methods, this in situ technique could be useful for various fields of agriculture, including cultivar selection or stress tolerance studies.  相似文献   
8.

Background and aims

The measurement of electrical capacitance in root–soil system (CR) is a useful method for estimating the root system size (RSS) in situ; however, CR–RSS regressions are often poor. It was hypothesized that this weak relationships could be partly due to the variable energy-loss rate, indicated by the dissipation factor (DF).

Methods

The values of CR and the associated DF were measured in six plant species grown in quasi-hydroponic pumice medium, arenosol and chernozem soil. The dielectric properties of the plant growth media were also recorded. A modified root–soil capacitance, CDF, was calculated from each CR/DF pair according to the formula CDF = CR·(DF/DFmean)α by estimating α with a standard nonlinear minimization of the sum of squared residuals for CDF–RSS regressions.

Results

The capacitive behavior of the medium improved (mean DF decreased) but fluctuated increasingly as the substrate became more complex. The mean DF values in plant–substrate systems were chiefly determined by the plant and were the most variable in chernozem soil. This strengthening substrate effect on CR measurements appeared as a decreasing trend in the R2 values obtained for the CR–RSS regressions. The regression slope was influenced by plant species and medium, while the y-intercept differed only between substrate types. The proposed use of CDF in place of CR could significantly improve the R2 of CDF–RSS regressions, particularly in chernozem soil (R2 increased by 0.07–0.31).

Conclusions

The application of CDF will provide more reliable and accurate RSS estimations and more efficient statistical comparisons. The findings are worth considering in future investigations using the root capacitance method.
  相似文献   
9.
Maize (Zea mays L.) haploid cells were cultivated in a 1500 ml aerated and stirred batch bioreactor using modified BM medium. Cell growth was highly affected by pH and dissolved oxygen, and we observed two fairly distinct growth phases. During the first two days after inoculation at pH 5.8, oxygen consumption was high and the cells lowered the pH to a value around 4.3. After this period the pH stabilized at 4.5 and the dissolved oxygen reached a steady level. Decreasing dissolved oxygen concentration leads to lower growth rate and to higher pH. Both events mean stress conditions for the cell culture and probably result in increased genetic variability, and the loss of regeneration capacity. The stress condition during the adaptation phase can be eliminated by decreasing the pH of the medium to 4.7 before inoculation and by keeping dissolved oxygen above 40%. These conditions provide prolonged exponential growth dynamics and the cell suspensions could be the basis of large scale cultures also.Abbreviations 2,4-d 2,4-dichlorophenoxyacetitc acid - NAA naphthalene acetic acid  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号