首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
2.
The role of lactogenic hormones (prolactin, growth hormone, cortisol and thyroid hormone) on lactation yield in Mithun cows as well as their rhythmicity throughout the lactation cycle were studied in Mizoram (n = 4) and Nagaland (n = 7) strain of mithun (Bos frontalis). Blood samples were collected from all the animals from the day of calving to the complete dry off at an interval of 15 days. All the hormones were estimated in the serum by commercially available ELISA kits. Plasma level of cortisol (μg/dl), growth hormone (GH, in ng/ml), prolactin (PRL, in μIU/ml), triiodothyronine (T3, in nmol/μl) and thyroxin (T4, in ng/ml) were 20.84 ± 0.29, 28.08 ± 0.56, 9.87 ± 0.20, 27.82 ± 0.56 and 51.33 ± 0.48, respectively, in mithun irrespective of strains during the lactation period. Levels of all the hormones varied significantly (p ≤ 0.01) during different days of lactation cycle but, there was no significant difference among strain. Levels of PRL, GH, cortisol and T3 were significantly (p < 0.01) higher around calving and declined sharply. The hormones remained in almost steady state during mid-lactation and declined during late lactation. All the hormones stated above were positively correlated with lactational yield thus their role on lactogenesis and galactopoiesis was established.  相似文献   
3.
A novel series of aryl hydrazono esters (AHE) (1-13) were synthesized (yield 76-98%) to study the oviposition responses in Aedes albopictus (Skuse) mosquitoes for the first time. At a concentration of 10 μg ml−1 in dual choice experiment, among the screened compounds, AHE-12 showed remarkable oviposition attractant activity with an oviposition activity index (OAI) of +0.299 (greater than 95% confidence limit) comparable to p-cresol (OAI +0.320) which is well-reported oviposition attractant for Aedes aegypti. Conversely, AHE-10 exhibited highest oviposition deterrent activity with OAI −0.247. The possible utilization of these compounds will be in integrated vector management strategies.  相似文献   
4.
Paraquat-induced nephrotoxicity involves severe renal cell damage caused by reactive oxygen species (ROS), specifically via increasing concentrations of superoxide anions in the kidney. Recently, superoxide dismutase (SOD) mimetics (SODm) have been developed that display safe SOD activities but which also possess additional antioxidant enzyme (e.g., catalase) or ROS-scavenging activities. The aim of this study was to compare the effects of two such SODm, specifically, EUK-134, a SODm with catalase activity, and tempol, a SODm with ROS-scavenging properties, on paraquat-induced nephrotoxicity of renal NRK-52E cells. Incubation with paraquat (1 mM) for 24 h reduced cell viability and increased necrosis significantly. Paraquat also generated significant quantities of superoxide anions and hydroxyl radicals. Both EUK-134 (10-300 microM) and tempol (0.3-1.0 mM) were able to improve cell viability and reduced paraquat-induced cell death significantly via dismutation or scavenging of superoxide anions and reduced hydroxyl radical generation. The data presented here suggest that SODm such as EUK-134 and tempol, which possess additional catalase and/or ROS-scavenging activities, can significantly reduce renal cell damage caused by paraquat. These effects were evident at concentrations which avoid the pro-oxidant activities associated with higher concentrations of SOD. Such SODm could therefore prove to be beneficial as therapies for paraquat nephrotoxicity.  相似文献   
5.
Recognition of double stranded ribonucleic acid is a critical event in many biological pathways such as trafficking, editing and maturation of mRNA, interferon antiviral response and RNA interference. In the context of probing double stranded RNA binding small molecules, the interaction of the antitumor protoberberine alkaloid coralyne with double stranded poly(A) has been studied by various biophysical techniques. Typical hypochromic and bathochromic shifts in the absorption spectrum and appreciable quenching of the intrinsic fluorescence of coralyne indicated the strong affinity of coralyne to poly(A). The corresponding intrinsic binding constant evaluated from Scatchard analysis was in the order of 10(5) M(-1). The strong binding was further characterized by significant polarization of the alkaloid fluorescence and stabilization of poly(A) helix against thermal strand separation. The binding process was manifested by remarkable perturbation of the intrinsic circular dichroic spectrum of poly(A) with concomitant generation of optical activity in the bound alkaloid molecules that are otherwise achiral. Job plot analysis showed the binding stoichiometry of the interaction process to be two base pairs per alkaloid molecule. The energetics of the strong interaction was studied by isothermal titration and differential scanning calorimetric techniques that suggested the binding to be exothermic and favoured by both negative enthalpy and positive entropy changes. All these results, together with the Stern-Volmer quenching experiment in fluorescence, revealed the molecular details of the intercalation of coralyne into poly(A) duplex leading to its potential use as an agent in gene regulation in eukaryotic cells.  相似文献   
6.
7.
8.
9.
There is compelling evidence that cellular DNA is the target of many anticancer agents. Consequently, elucidation of the molecular nature governing the interaction of small molecules to DNA is paramount to the progression of rational drug design strategies. In this study, we have compared the binding and thermodynamic aspects of two known DNA-binding agents, quinacrine (QNA) and methylene blue (MB), with calf thymus (CT) DNA. The study revealed noncooperative binding phenomena for both the drugs to DNA with an affinity one order higher for QNA compared to MB as observed from diverse techniques, but both bindings obeyed neighbor exclusion principle. The data of the salt dependence of QNA and MB from the plot of log K versus log [Na+] revealed a slope of 1.06 and 0.93 consistent with the values predicted by theories for the binding of monovalent cations, and have been analyzed for contributions from polyelectrolytic and nonpolyelectrolytic forces. The binding of both drugs was further characterized by strong stabilization of DNA against thermal strand separation in both optical melting and differential scanning calorimetry studies. The binding data analyzed from the thermal denaturation and from isothermal titration calorimetry (ITC) were in close proximity to those obtained from spectral titration data. ITC results revealed the binding to be exothermic and favored by both negative enthalpy and positive entropy changes. The heat capacity changes obtained from temperature dependence of enthalpy indicated -146 and -78 cal/(mol.K), respectively, for the binding of QNA and MB to CT DNA. Circular dichroism study further characterized the structural changes on DNA upon intercalation of these molecules. Molecular aspects of interaction of these molecules to DNA are discussed.  相似文献   
10.
Present communication deals with the in vitro time point quantitative antibacterial evaluation of newly synthesized 1,2-disubstituted benzimidazoles (3ap) and 2-substituted benzothiazoles (5ah) against Gram-positive bacteria Staphylococcus aureus, Bacillus cereus, and Gram-negative bacteria Vibrio cholerae, Shigella dysenteriae and Escherichia coli. These compounds were synthesized under mild reaction conditions using Al2O3–Fe2O3 nanocrystals as heterogeneous catalyst. Bio-evaluation studies revealed that, compounds 3a, 5a and 5d exhibited moderate to good antibacterial activity against all the tested bacterial stains. The compounds 3a, 3f and 5a have shown enhanced inhibitory activity compared with standard antibacterial drug ciprofloxacin against V. cholerae, B. cereus, and S. dysenteriae, respectively. Additionally, the compounds 3a, 3e, 3f, 3h and 5b displayed complete bactericidal activity within 24 h, whereas ciprofloxacin took 48 h to kill those bacteria completely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号