首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Spirulina produces γ-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of twoSpirulina strains, wild type BP and a high-GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis ofS. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass synthesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes—the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate—were measured and the remaining fluxes were calculated using linear optimization. The calculation showed that the flux through the reaction converting acetyl-CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild-type strain. This finding implies that this reaction is rate controlling. This suggestion was supported by experiments, in which the stimulating factors for this reaction (NADPH and MgCl2) were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.  相似文献   
2.
Glycinebetaine is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants when these plants are exposed to salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into glycinebetaine, has previously been cloned from a soil bacterium, Arthrobacter globiformis. Transformation of Arabidopsis thaliana with the cloned codA gene under the control of the 35S promoter of cauliflower mosaic virus enabled the plant to accumulate glycinebetaine and enhanced its tolerance to salt and cold stress. At 300 mM NaCl, considerable proportions of seeds of transformed plants germinated well, whereas seeds of wild-type plants failed to germinate. At 100 mM NaCl, transformed plants grew well whereas wild-type plants did not do so. The transformed plants tolerated 200 mM NaCl, which was lethal to wild-type plants. After plants had been incubated with 400 mM NaCl for two days, the photosystem II activity of wild-type plants had almost completely disappeared, whereas that of transformed plants remained at more than 50% of the original level. When exposed to a low temperature in the light, leaves of wild-type plants exhibited symptoms of chlorosis, whereas those of transformed plants did not. These observations demonstrate that the genetic modification of Arabidopsis thaliana that allowed it to accumulate glycinebetaine enhanced its ability to tolerate salt and cold stress.  相似文献   
3.
The cyanobacterium Synechococcus sp. strain PCC 7942 was transformed with the codA gene for choline oxidase from Arthrobacter globiformis under the control of a constitutive promoter. This transformation allowed the cyanobacterial cells to accumulate glycine betaine at 60 to 80 mM in the cytoplasm. The transformed cells could grow at 20 degrees C, the temperature at which the growth of control cells was markedly suppressed. Photosynthesis of the transformed cells at 20 degrees C was more tolerant to light than that of the control cells. This was caused by the enhanced ability of the photosynthetic machinery in the transformed cells to recover from low-temperature photoinhibition. In darkness, photosynthesis of the transformed cells was more tolerant to low temperature such as 0 to 10 degrees C than that of the control cells. In parallel with the improvement in the ability of the transformed cells to tolerate low temperature, the lipid phase transition of plasma membranes from the liquid-crystalline state to the gel state shifted toward lower temperatures, although the level of unsaturation of the membrane lipids was unaffected by the transformation. These findings suggest that glycine betaine enhances the tolerance of photosynthesis to low temperature.  相似文献   
4.
The initial and rate determining step in the mechanism of fatty acid desaturases has been proposed to be breakage of one of the C---H bonds at the site of the incipient double bond. This has been investigated and supported for a number of eukaryotic fatty acid desaturases through the use of kinetic isotope effect experiments with deuterated substrates. In order to probe the reaction catalyzed by the cyanobacterial Δ9 desaturase and compare it to the eukaryotic desaturases, the desC gene of Spirulina platensis, strain C1 (Arthrospira sp. PCC 9438) was expressed in a desaturase mutant of baker's yeast. Kinetic isotope effects were performed by culturing yeast transformants with deuterated thia-substituted stearic acids. A large kinetic isotope effect was found for the 9 position, in qualitative agreement with results from eukaryotic desaturases.  相似文献   
5.
A mutant of Spirulina(Arthrospira) platensis, strain I22,obtained by mutagenesis with ethylmethanesulfonate, was partially defective inthe production of -linolenic acid. However, when compared with the wildform, the I22 mutant almost lost its capacity to grow at low temperatures,although at optimal temperature growth was unaffected. Measurement of themutant's photosynthetic characteristics, including O2-evolution,Pmaxand light saturation values, revealed significantly lower values than for thewild type, in contrast to the higher content of photosynthetic pigments,chlorophyll and phycocyanin. Whereas the total activity of photosynthesis oftheI22 mutant was 58% lower than that of the wild type, the PS II activity of theI22 mutant was 23% higher. On the other hand, the I22 mutant was 69% lower inPSI activity, and the growth rate of this mutant was limited at high lightintensity. These results indicated that the defect in the PS I complex of theI22 mutant may reduce its ability to utilize light to generate the energy usedin diverse biochemical processes, including fatty acid desaturation.  相似文献   
6.
The genes from a cyanobacterium--Spirulina platensis strain C1--that encode the acyl-lipid desaturases (desC, desA and desD) involved in gamma-linolenic (GLA) synthesis have been successfully expressed for the first time in Escherichia coli by employing a pTrcHisA expression system. In this report, the authors describe the expression of the three Spirulina N-terminal 6xHis-desaturases as well as the functional analysis of these recombinant proteins. The gene products of desC, desA and desD have approximate molecular masses of 37, 45, and 47 kDa, respectively. Enzymatic activity measurement of these products was carried out in vivo to demonstrate that (i) the expressed proteins are in functional form, and (ii) the cofactors of the host system can complement the system of Spirulina platensis. The study demonstrated that the gene products of desC and desA catalyzed the reactions in vivo where the enzyme substrates were provided in appropriate concentration. This indicates that the delta9 and delta12 desaturases were expressed in the heterologous host in their active form, and that these two reactions can be carried out in an E. coli host cell using its cofactors system. In contrast, delta6 desaturase activity can be detected only in vitro where electron carriers are provided. This suggests that while this enzyme is expressed in the heterologous host in its active form, its function in vivo is suppressed, as the electron carriers of the host system cannot complement the system of Spirulina platensis.  相似文献   
7.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   
8.
Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was experssed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60–80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号