首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7780篇
  免费   738篇
  国内免费   2篇
  2023年   33篇
  2022年   22篇
  2021年   158篇
  2020年   117篇
  2019年   136篇
  2018年   170篇
  2017年   177篇
  2016年   220篇
  2015年   417篇
  2014年   466篇
  2013年   591篇
  2012年   727篇
  2011年   697篇
  2010年   439篇
  2009年   408篇
  2008年   563篇
  2007年   504篇
  2006年   494篇
  2005年   436篇
  2004年   459篇
  2003年   327篇
  2002年   370篇
  2001年   77篇
  2000年   43篇
  1999年   65篇
  1998年   82篇
  1997年   52篇
  1996年   30篇
  1995年   26篇
  1994年   25篇
  1993年   31篇
  1992年   14篇
  1991年   14篇
  1990年   20篇
  1989年   14篇
  1988年   7篇
  1987年   10篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8520条查询结果,搜索用时 31 毫秒
1.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
2.
Polyphosphoinositides are an important class of lipid that recruit specific effector proteins to organelle membranes. One member, phosphatidylinositol 4-phosphate (PtdIns4P) has been localized to Golgi membranes based on the distribution of lipid binding modules from PtdIns4P effector proteins. However, these probes may be biased by additional interactions with other Golgi-specific determinants. In this paper, we derive a new PtdIns4P biosensor using the PtdIns4P binding of SidM (P4M) domain of the secreted effector protein SidM from the bacterial pathogen Legionella pneumophila. PtdIns4P was necessary and sufficient for localization of P4M, which revealed pools of the lipid associated not only with the Golgi but also with the plasma membrane and Rab7-positive late endosomes/lysosomes. PtdIns4P distribution was determined by the localization and activities of both its anabolic and catabolic enzymes. Therefore, P4M reports a wider cellular distribution of PtdIns4P than previous probes and therefore will be valuable for dissecting the biological functions of PtdIns4P in its assorted membrane compartments.  相似文献   
3.
4.
5.
Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY.  相似文献   
6.
7.
The CMP-N-acetylneuraminic acid (CMP-NeuNAc) synthetase gene of Neisseria meningitidis group B is located on a 2.3-kb EcoRI fragment within the cps gene cluster. Nucleotide sequence determination of the gene encoding the CMP-NeuNAc synthetase revealed a 515-bp open reading frame that can encode a 18.9-kDA protein. A computer data base scan revealed a 59.4% identity to the CMP-NeuNAc synthetase gene of E. coli K1. Enzymatic activity was confirmed in vitro and in vivo. Transformation of the CMP-NeuNAc defective E. coli K1 strain EV5 with the meningococcal CMP-NeuNAc synthetase could complement the defect in E. coli.  相似文献   
8.
Insecticide resistance has limited the number of available chemical options for insect pest control. Hence there is a need for new chemistries with novel modes of action. Here we investigate the mode of action for an insecticide that has not yet been released for commercial use. The ovicidal, larvacidal and adulticidal effects of 5,5′-dimethyl -2, 2′-dipyridyl (termed Ha44), which is being developed as a treatment for head lice, were evaluated in the Drosophila melanogaster model system. Ha44 demonstrated significant activity against embryos and was capable of arresting development at a number of stages of embryogenesis. The effects of Ha44 on embryos was shown to be reversible following the addition of the metal ions Fe(II) and Fe(III), Cu and Zn. When larvae were exposed to Ha44, lethality was recorded at similar concentrations to those observed for embryos. Using an eYFP reporter system it was shown that Ha44 was able to reduce the levels of both copper and zinc in the digestive tract, confirming the binding of Ha44 to these metals in vivo. Ha44 has further been shown to inhibit a zinc containing metalloproteinase in vitro. Exposure of adult flies to Ha44 resulted in lethality, but at higher concentrations than those observed for embryos and larvae. The median lethal dose in adult flies was shown to be associated with the type of exposure, with an LD-50 of 1.57 mM being recorded following the direct contact of flies with Ha44, while an LD-50 of 12.29 mM was recorded following the ingestion of the compound. The capacity of Ha44 to act on all stages of the life-cycle and potentially via a range of targets suggests that target site resistance is unlikely to evolve.  相似文献   
9.

Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples.

  相似文献   
10.
The host-pathogen combinations—Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号