首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   35篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   6篇
  2019年   7篇
  2018年   16篇
  2017年   11篇
  2016年   19篇
  2015年   16篇
  2014年   19篇
  2013年   27篇
  2012年   46篇
  2011年   49篇
  2010年   26篇
  2009年   22篇
  2008年   25篇
  2007年   28篇
  2006年   28篇
  2005年   12篇
  2004年   17篇
  2003年   22篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
1.
2.
Magnesium nutrition is often forgotten, while its absence adversely affects numerous functions in plants. Magnesium deficiency is a growing concern for crop production frequently observed in lateritic and leached acid soils. Competition with other cations (Ca2+, Na+, and K+) is also found to be an essential factor, inducing magnesium deficiency in plants. This nutrient is required for chlorophyll formation and plays a key role in photosynthetic activity. Moreover, it is involved in carbohydrate transport from source-to-sink organs. Hence, sugar accumulation in leaves that results from the impairment of their transport in phloem is considered as an early response to Mg deficiency. The most visible effect is often recorded in root growth, resulting in a significant reduction of root/shoot ratio. Carbohydrate accumulation in source leaves is attributed to the unique chemical proprieties of magnesium. As magnesium is a nutrient with high mobility in plants, it is preferentially transported to source leaves to prevent severe declines in photosynthetic activity. In addition, Mg is involved in the source-to-sink transport of carbohydrates. Hence, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. We hereby review all these aspects with a special emphasis on the role of Mg in photosynthesis and the structural and functional effects of its deficiency on the photosynthetic apparatus.  相似文献   
3.
When cultured 3T3-F442A cells undergo adipose differentiation, they produce extracellular matrix (ECM) that is not present in undifferentiated cells. This ECM stains strongly with ruthenium red, tannic acid and with Alcian blue at both pH 1 and 2.5, showing histochemical characteristics similar to sulphated and non-sulphated glycosaminoglycans. Under the electron microscope, ECM was observed bound to the cell surface and in the intercellular space; it was composed of fibrils of several thicknesses with attached granules and fibrous long-spacing forms of collagen. In addition, adipocytes were observed as rounded cells interconnected with the ECM fibrils, thus giving rise to fat cell clusters similar to the adipocyte lobules found in adipose tissue. Since fat cell clusters in culture emerge by clonal expansion of one adipose precursor cell, we suggest that this ECM can keep daughter adipocytes interconnected during differentiation. ECM production by adipocytes might have some significance for the formation of fat cell lobules in vivo.  相似文献   
4.
5.
In soil biota, higher and enduring concentration of heavy metals like cadmium (Cd) is hazardous and associated with great loss in growth, yield, and quality parameters of most of the crop plants. Recently, in-situ applications of eco-friendly stabilizing agents in the form of organic modifications have been utilized to mitigate the adverse effects of Cd-toxicity. This controlled experiment was laid down to appraise the imprints of various applied organic amendments namely poultry manure (PM), farmyard manure (FYM), and sugarcane press mud (PS) to immobilize Cd in polluted soil. Moreover, phytoavailability of Cd in wheat was also accessed under an alkaline environment. Results revealed that the addition of FYM (5–10 ton ha-1 ) in Cd-contaminated soil significantly increased germination rate, leaf chlorophyll content, plant height, spike length, biological and grain yield amongst all applied organic amendments. Moreover, the addition of FYM (5–10 ton ha-1 ) also reduced the phytoavailability of Cd by 73–85% in the roots, 57–83% in the shoots, and 81–90% in grains of wheat crop. Thus, it is affirmed that incorporation of FYM (5–10 ton ha-1 ) performed better to enhance wheat growth and yield by remediating Cd. Thus, the application of FYM (5–10 ton ha-1 ) reduced the toxicity induced by Cd to plants by declining its uptake and translocation as compared to all other applied organic amendments to immobilize Cd under sandy alkaline polluted soil.  相似文献   
6.
Cereal-legume intercropping plays a vital role in the subsistence food production system that prevails in the arid regions. It not only provides profitable crop productivity for agricultural communities but also plays an important role in improving soil fertility. Therefore, the present research was conducted to assess the effect of the organic and mineral fertilizers on the forage yield and nutritional value in barley-pea intercropping system. The results revealed that the quality of forage grass is significantly influenced by both organic and inorganic fertilizer. Thus, organic fertilizer application has significantly influenced the dry matter (DM), crude ash (CA), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Among the treatments, organic fertilizer added at rate of 35 m−3 ha−1 produced the maximum fresh and dry matter in barley and peas. In addition, the same level of organic fertilizer also improved silage composition by significantly increasing the protein and fiber content and showed highest the values. Based on overall results, it is concluded that organic fertilizer treatment (35 m−3 ha−1) has the potential as an effective strategy to improve the productivity and nutritional quality of the barley-pea intercropping system in arid areas. The results revealed that organic fertilizer can be utilized in sustainable agricultural as a source of nutrients for numerous various crops under arid conditions.  相似文献   
7.
8.
9.
Fusaric acid (FA) (5-n-butylpuridine 2-carboxyl acid), a highly toxic secondary metabolite produced by Fusarium oxysporum strains, plays a significant role in disease development. The abilities of three F. oxysporum f. sp. gladioli (Massey) Snyder and Hansen isolates (G010; 649-91; and 160-57) to produce FA in infected Gladiolus corm tissues was evaluated in vitro in relation to the presence of two biological control agents, Trichoderma harzianum T22, and Aneurinobacillus migulanus. Pathogenicity tests were used to differentiate between the abilities of the F. oxysporum strains to secrete FA. FA was identified using LC/MS and quantified using HPLC. Isolate G010 was significantly more virulent (P < 0.01) on Gladiolus grandiflorus corms; it secretes 1.8 μM FA/g fresh weight corm into inoculated Gladiolus. Moreover, G010 was the only isolate that produced FA among the three examined isolates. There was a correlation between the corm lesion area and the FA secretion ability of F. oxysporum f. sp. gladioli (P < 0.001; r 2 = 0.96). No FA was detected in PDA cultures of F.oxysporum f. sp. gladioli isolates. The presence of T. harzianum T22 appeared to prevent FA secretion into the corms. In the presence of A. migulanus, however, the amount of FA secreted into the corm tissues increased. These results support the use of T. harzianum as an effective biological control agent against F. oxysporum f. sp. gladioli.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号