首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2007年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
排序方式: 共有34条查询结果,搜索用时 46 毫秒
1.
The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.Isoprenoids represent the largest and most diverse group (over 50,000) of natural compounds and are essential in all living organisms (Gershenzon and Dudareva, 2007; Thulasiram et al., 2007). They are economically important for humans as flavor and fragrance, cosmetics, drugs, polymers for rubber, and precursors for the chemical industry (Chang and Keasling, 2006). The broad variety of isoprenoid products is formed from two building blocks, dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP). In plants, the plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway (Zeidler et al., 1997) produces physiologically and ecologically important volatile organic compounds (VOCs), the carotenoids (tetraterpenes; Giuliano et al., 2008; Cazzonelli and Pogson, 2010), diterpenes, the prenyl side-chains of chlorophylls (Chls) and plastoquinones, isoprenylated proteins, the phytohormones gibberellins, and side-chain of cytokinins (for review, see Dudareva et al., 2013; Moses et al., 2013). Industrially important prokaryotes (e.g. Escherichia coli) also use the MEP pathway for the biosynthesis of isoprenoids (Vranová et al., 2012), and there is an increasing interest in manipulating the MEP pathway of engineered microbes to increase production of economically relevant isoprenoids (Chang and Keasling, 2006). To achieve this, a mechanistic understanding of the regulation of the MEP pathway is needed (Vranová et al., 2012).Some plants, including poplars (Populus spp.), produce large amounts of the hemiterpene VOC isoprene. Worldwide isoprene emissions from plants are estimated to be 600 teragrams per year and to account for one-third of all hydrocarbons emitted to the atmosphere (Arneth et al., 2008; Guenther, 2013). Isoprene has strong effects on air chemistry and climate by participating in ozone formation reactions (Fuentes et al., 2000), by prolonging the lifespan of methane, a greenhouse gas (Poisson et al., 2000; Archibald et al., 2011), and by taking part in the formation of secondary organic aerosols (Kiendler-Scharr et al., 2012).Poplar leaves invest a significant amount of recently fixed carbon in isoprene biosynthesis (Delwiche and Sharkey, 1993; Schnitzler et al., 2010; Ghirardo et al., 2011) to cope with abiotic stresses (Sharkey, 1995; Velikova and Loreto, 2005; Behnke et al., 2007, 2010b, 2013; Vickers et al., 2009; Loreto and Schnitzler, 2010; Sun et al., 2013b), although there are indications that other protective mechanisms can partially compensate the lack of isoprene emission in genetically transformed poplars (Behnke et al., 2012; Way et al., 2013). It has been suggested that in isoprene-emitting (IE) species, most of the carbon that passes through the MEP pathway is used for isoprene biosynthesis (Sharkey and Yeh, 2001). However, a recent study using pulse-chase labeling with 14C has shown continuous synthesis and degradation of carotenes and Chl a in mature leaves of Arabidopsis (Arabidopsis thaliana; Beisel et al., 2010), and the amount of flux diverted to carotenoid and Chl synthesis compared with isoprene biosynthesis in poplar leaves is not known.Isoprene emission is temperature, light, and CO2 dependent (Schnitzler et al., 2005; Rasulov et al., 2010; Way et al., 2011; Monson et al., 2012; Li and Sharkey, 2013a). It has been demonstrated that isoprene biosynthesis depends on the activities of IDP isomerase (EC 5.3.3.2), isoprene synthase (ISPS; EC 4.2.3.27), and the amount of ISPS substrate, DMADP (Brüggemann and Schnitzler, 2002a, 2002b; Schnitzler et al., 2005; Rasulov et al., 2009b). In turn, DMADP concentration has been hypothesized to act as a feedback regulator of the MEP pathway by inhibiting 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7), the first enzyme of the MEP pathway (Banerjee et al., 2013). Understanding the controlling mechanism of isoprene biosynthesis is not only of fundamental relevance, but also necessary for engineering the MEP pathway in various organisms and for accurate simulation of isoprene emissions by plants in predicting atmospheric reactivity (Niinemets and Monson, 2013).There is ample evidence that silencing the ISPS in poplar has a broad effect on the leaf metabolome (Behnke et al., 2009, 2010a, 2013; Way et al., 2011; Kaling et al., 2014). While some of those changes (e.g. ascorbate and α-tocopherol) are compensatory mechanisms to cope with abiotic stresses, others (e.g. shikimate pathway and phenolic compounds) might be related to the alteration of the MEP pathway (Way et al., 2013; Kaling et al., 2014). The perturbation of these metabolic pathways can be attributed to the removal of a major carbon sink of the MEP pathway and the resulting change in the energy balance within the plant cell (Niinemets et al., 1999; Ghirardo et al., 2011). In this work, we analyzed the carbon fluxes through the MEP pathway into the main plastidic isoprenoid products.We used the 13C-labeling technique as a tool to measure the carbon fluxes through the MEP pathway at different temperatures, light intensities, and CO2 concentrations in mature leaves of IE and transgenic, isoprene-nonemitting (NE) gray poplar (Populus × canescens). Isoprene emission was drastically reduced in the transgenic trees through knockdown of PcISPS gene expression by RNA interference, resulting in plants with only 1% to 5% of isoprene emission potential compared with wild-type plants (Behnke et al., 2007).We measured the appearance of 13C in the isoprenoid precursors 2-C-methyl-d-erythritol-2,4-cyclodiphosphate (MEcDP) and DMADP as well as isoprene and the major downstream products of the MEP pathway, i.e. carotenoids and Chls. To reliably detect de novo synthesis of the pigments, which occur at very low rates (Beisel et al., 2010), we used isotope ratio mass spectrometry (IRMS).Here, (1) we quantify the effect of isoprene biosynthesis on the MEP pathway in poplar, and (2) we show that suppression of isoprene biosynthesis negatively affects the carbon flux through the MEP pathway by accumulating plastidic DMADP, which feeds back to inhibit PcDXS, leading to (3) a slight increase of carbon flux toward production of greater chain-length isoprenoids and (4) a strong decrease in the overall isoprenoid carbon fluxes to compensate for the much lower MEP pathway demand for carbon. This study strongly supports the hypothesis that an important regulatory mechanism of the MEP pathway is the feedback regulation of plastidic DMADP on DXS. The large carbon flux through the MEP pathway of IE poplar plastids demonstrates the potential of transgenically altered IE plant species to produce economically valuable isoprenoids at high rates in, for instance, industrial applications.  相似文献   
2.
y+LAT-1 and 4F2hc are the subunits of a transporter complex for cationic amino acids, located mainly in the basolateral plasma membrane of epithelial cells in the small intestine and renal tubules. Mutations in y+LAT-1 impair the transport function of this complex and cause a selective aminoaciduria, lysinuric protein intolerance (LPI, OMIM #222700), associated with severe, complex clinical symptoms. The subunits of an active transporter co-localize in the plasma membrane, but the exact process of dimerization is unclear since direct evidence for the assembly of this transporter in intact human cells has not been available. In this study, we used fluorescence resonance energy transfer (FRET) microscopy to investigate the interactions of y+LAT-1 and 4F2hc in HEK293 cells expressing y+LAT-1 and 4F2hc fused with ECFP or EYFP. FRET was quantified by measuring fluorescence intensity changes in the donor fluorophore (ECFP) after the photobleaching of the acceptor (EYFP). Increased donor fluorescence could be detected throughout the cell, from the endoplasmic reticulum and Golgi complex to the plasma membrane. Therefore, our data prove the interaction of y+LAT-1 and 4F2hc prior to the plasma membrane and thus provide evidence for 4F2hc functioning as a chaperone in assisting the transport of y+LAT-1 to the plasma membrane.  相似文献   
3.
In the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars. Similar impairment was not detected when the leaves were exposed to high light (lightflecks) only. Within 10 h non-isoprene emitting poplars recovered from sunfleck-related impairment as indicated by chlorophyll fluorescence and microarray analysis. Unstressed leaves of non-isoprene emitting poplars had higher ascorbate contents, but also higher contents of malondialdehyde than wild-type. Microarray analyses revealed lipid and chlorophyll degradation processes in the non-isoprene emitting poplars. Thus, there is evidence for an adjustment of the antioxidative system in the non-isoprene emitting poplars even under normal growth conditions.  相似文献   
4.
Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant–insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant–insect and plant–pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.  相似文献   
5.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   
6.
7.
A topic under intensive study in community ecology and biogeography is the degree to which microscopic, as well as macroscopic organisms, show spatially-structured variation in community characteristics. In general, unicellular microscopic organisms are regarded as ubiquitously distributed and, therefore, without a clear biogeographic signal. This view was summarized 75  years ago by Baas-Becking, who stated "everything is everywhere, but, the environment selects". Within the context of metacommunity theory, this hypothesis is congruent with the species sorting model. By using a broad-scale dataset on stream diatom communities and environmental predictor variables across most of Finland, our main aim was to test this hypothesis. Patterns of spatial autocorrelation were evaluated by Moran's I based correlograms, whereas partial regression analysis and partial redundancy analysis were used to quantify the relative importance of environmental and spatial factors on total species richness and on community composition, respectively. Significant patterns of spatial autocorrelation were found for all environmental variables, which also varied widely. Our main results were clear-cut. In general, pure spatial effects clearly overcame those of environmental effects, with the former explaining much more variation in species richness and community composition. Most likely, missing environmental variables cannot explain the higher predictive power of spatial variables, because we measured key factors that have previously been found to be the most important variables (e.g. pH, conductivity, colour, phosphorus, nitrogen) shaping the structure of diatom communities. Therefore, our results provided only limited support for the Baas-Becking hypothesis and the species sorting perspective of metacommunity theory.  相似文献   
8.
Many scholars of industrial ecology have focused on the institutional and organizational challenges of building and maintaining regional industrial symbiosis through the synergistic integration of material and energy flows. Despite the promise that these intellectual developments hold for the future dematerialization of industrial production, they rarely address the actual regulatory obstacles of turning wastes into raw materials. In this article we introduce a potential future industrial symbiosis around the Gulf of Bothnia between Finland and Sweden, and assess the regulatory bottlenecks related to waste by‐product consideration. We find that although the Gulf of Bothnia region has technological and economic potential for industrial symbiosis, the regulatory support for this is insufficient. We suggest a common pool resource‐based governance system that could utilize market and regulatory mechanisms in a regional‐level cross‐border system of governance. Importantly, the suggested governance system would protect the users of potential raw materials from unpredictable waste regulation, market risks related to large‐scale material flows, and societal risks of hazardous waste treatment.  相似文献   
9.
10.
The volatile hemiterpene isoprene is emitted from plants and can affect atmospheric chemistry. Although recent studies indicate that isoprene can enhance thermotolerance or quench oxidative stress, the underlying physiological mechanisms are largely unknown. In this work, Arabidopsis (Arabidopsis thaliana), a natural nonemitter of isoprene and the model plant for functional plant analyses, has been constitutively transformed with the isoprene synthase gene (PcISPS) from Grey poplar (Populus x canescens). Overexpression of poplar ISPS in Arabidopsis resulted in isoprene-emitting rosettes that showed transiently enhanced growth rates compared to the wild type under moderate thermal stress. The findings that highest growth rates, higher dimethylallyl diphosphate levels, and enzyme activity were detected in young plants during their vegetative growth phase indicate that enhanced growth of transgenic plants under moderate thermal stress is due to introduced PcISPS. Dynamic gas-exchange studies applying transient cycles of heat stress to the wild type demonstrate clearly that the prime physiological role of isoprene formation in Arabidopsis is not to protect net assimilation from damage against thermal stress, but may instead be to retain the growth potential or coordinated vegetative development of the plant. Hence, this study demonstrates the enormous potential but also the pitfalls of transgenic Arabidopsis (or other nonnatural isoprenoid emitters) in studying isoprene biosynthesis and its biological function(s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号