首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   1篇
  2016年   1篇
  2012年   1篇
  2003年   1篇
  1990年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
2.
3.
An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß‐myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß‐myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß‐myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß‐myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß‐myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis.  相似文献
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号