首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   29篇
  2022年   2篇
  2021年   4篇
  2018年   6篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   25篇
  2012年   18篇
  2011年   15篇
  2010年   12篇
  2009年   13篇
  2008年   24篇
  2007年   20篇
  2006年   31篇
  2005年   30篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   12篇
  2000年   12篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   10篇
  1995年   14篇
  1994年   4篇
  1993年   8篇
  1992年   10篇
  1991年   15篇
  1990年   6篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   9篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有509条查询结果,搜索用时 109 毫秒
1.
X-linked hyper-IgM syndrome (XHIM) is a rare primary immunodeficiency caused by a defective CD40 ligand. We identified mutations of the CD40 ligand gene in 13 unrelated Japanese XHIM patients. Of the four patients with missense mutations, one had a mutation within the transmembrane domain, and the three others had mutations affecting the TNF homology region of the extracellular domain. Two of the missense mutations resulted in the substitution of amino acids that are highly conserved in TNF family proteins. Three patients had nonsense mutations, all of which resulted in the truncation of the TNF homology domain of the CD40 ligand. Three patients had genomic DNA deletions of 2, 3 or 4 nucleotides, respectively. All of the deletions were flanked by direct repeat sequences, suggesting that these deletions were caused by slipped mispairing. Three patients had mutations within introns resulting in altered splicing, and multiple splicing products were found in one patient. Thus, each of the 13 Japanese patients had different mutations, 9 of them being novel mutations. These results indicate that mutations in XHIM are highly heterogeneous, although codon 140 seems to be a hot spot of the CD40 ligand gene since two additional point mutations were located at Trp 140, bringing the total numbers of mutations affecting codon 140 to six. In one XHIM family with a missense mutation, prenatal diagnosis was performed by single-strand conformation polymorphism analysis of genomic DNA of a male fetus. Received: 20 August 1996  相似文献   
2.
3.
To elucidate the role of the spiral limbus in glucose transport in the cochlea, we analyzed the expression and localization of GLUT1, connexin26, connexin30, and occludin in the spiral limbus of the rat cochlea. GLUT1 and occludin were detected in blood vessels. GLUT1, connexin26, connexin30, and occludin were also expressed in fibrocytes just basal to the supralimbal lining cells. Connexin26 and connexin30 were present among not only these GLUT1-positive fibrocytes but also GLUT1-negative fibrocytes. In vivo glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the spiral limbus, whereas EBA was localized only in the vessels. Moreover, the gap junctional uncoupler heptanol inhibited the distribution of 6-NBDG. These findings suggest that gap junctions play an important role in glucose transport in the spiral limbus, i.e., that gap junctions mediate glucose transport from GLUT1-positive fibrocytes to GLUT1-negative fibrocytes in the spiral limbus.  相似文献   
4.
5.
We examined whether actin filaments are involved in the cAMP-dependent activation of a high affinity sodium/glucose cotransporter (SGLT1) using epithelial expression systems. The expression of enhanced green fluorescent protein-tagged SGLT1 (EGFP-SGLT1) in Madin-Darby canine kidney (MDCK) cells was revealed by Western blotting and confocal laser microscopy. 8-Br-cAMP, a membrane permeable cAMP analog, enhanced [14C]-α-methyl glucopyranoside ([14C]-AMG) uptake. Both basal and 8-Br-cAMP-elicited [14C]-AMG uptakes were inhibited by N-(2{[3-(4-bromophenyl)-2-propenyl]-amino}-ethyl)-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, and cytochalasin D, an actin filament formation inhibitor. Furthermore, cytochalasin D inhibited the distribution of EGFP-SGLT1 at the apical surface. These results suggest that the EGFP-SGLT1 protein is functionally expressed in the apical membrane of MDCK cells, and is up-regulated by a cAMP-dependent pathway requiring intact actin filaments.  相似文献   
6.
Expression of human leukotriene A4 hydrolase cDNA in Escherichia coli   总被引:2,自引:0,他引:2  
The cDNA clone encoding human leukotriene A4 hydrolase was inserted into a vector pUC9 and expressed in Escherichia coli as a fusion protein containing the first 10 amino acid residues derived from a vector. The leukotriene A4 hydrolase activity was recovered in the soluble fraction of the transformants. The purified enzyme showed kinetic properties similar to the native enzyme, including inactivation by the substrate and sulfhydryl-modifying reagents. The results demonstrate that a protein with an Mr of 70,000 was expressed in Escherichia coli with a full enzyme activity and structural fidelity. Acquisition of the expression system makes it feasible to elucidate the reaction mechanism of the enzyme.  相似文献   
7.
Kunisawa  Kazuo  Shan  Jiajing  Lu  Qiaohui  Yang  Yang  Kosuge  Aika  Kurahashi  Hitomi  Saito  Kuniaki  Zou  Libo  Nabeshima  Toshitaka  Mouri  Akihiro 《Neurochemical research》2022,47(9):2880-2889
Neurochemical Research - Major depressive disorder (MDD) is the most prevalent and serious psychiatric disease involving inflammation. Loureirin C and Xanthoceraside are extracts of dragon’s...  相似文献   
8.
9.
The class III phosphatidylinositol-3 kinase (PI3K (III)) regulates intracellular vesicular transport at multiple steps through the production of phosphatidylinositol-3-phosphate (PI(3)P). While the localization of proteins at distinct membrane domains are likely regulated in different ways, the roles of PI3K (III) and its effectors have not been extensively investigated in a polarized cell during tissue development. In this study, we examined in vivo functions of PI3K (III) and its effector candidate Rabenosyn-5 (Rbsn-5) in Drosophila wing primordial cells, which are polarized along the apical-basal axis. Knockdown of the PI3K (III) subunit Vps15 resulted in an accumulation of the apical junctional proteins DE-cadherin and Flamingo and also the basal membrane protein β-integrin in intracellular vesicles. By contrast, knockdown of PI3K (III) increased lateral membrane-localized Fasciclin III (Fas III). Importantly, loss-of-function mutation of Rbsn-5 recapitulated the aberrant localization phenotypes of β-integrin and Fas III, but not those of DE-cadherin and Flamingo. These results suggest that PI3K (III) differentially regulates localization of proteins at distinct membrane domains and that Rbsn-5 mediates only a part of the PI3K (III)-dependent processes.  相似文献   
10.
In order to acquire phase-contrast images with adequate contrast, conventional TEM requires large amount of defocus. Increasing the defocus improves the low-frequency components but attenuates the high-frequency ones. On the other hand, Zernike phase-contrast TEM (ZPC-TEM) can recover low-frequency components without losing the high-frequency ones under in-focus conditions. ZPC-TEM however, has another problem, especially in imaging of complex biological specimens such as cells and tissues; strong halos appear around specimen structures, and these halos hinder the interpretation of images. Due to this problem, the application of ZPC-TEM has been restricted to imaging of smaller particles. In order to improve the halo appearance, we fabricated a new quarter-wave thin film phase-plate with a smaller central hole and tested it on vitreous biological specimens. ZPC-TEM with the new plate could successfully visualize, in in-focus images, the intracellular fine features of cultured cells and brain tissues. This result indicates that reduction of the central hole diameter makes ZPC-TEM applicable on size scales ranging from protein particles to tissue sections. The application of ZPC-TEM to vitreous biological specimens will be a powerful method to advance the new field of imaging science for ultrastructures in close-to-physiological state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号