首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   5篇
  2001年   2篇
  2000年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Melanogenesis cascade may be directly or indirectly linked to the dynamics of endosome-lysosome biogenesis. This study aims to identify how and to what extent the endosome-lysosome system is involved in melanosome biogenesis, by utilizing a novel melanogenesis marker, J1, which we identified in the process of developing monoclonal antibodies (MoAbs) against human melanosomes. The antigenic epitope of MoAb J1 was expressed by all of the melanotic and nonmelanotic cells examined. It was expressed primarily by granular structures located in regions proximal to the Golgi complex. Most of MoAb J1 positive granules were co-stained with melanogenic markers, tyrosinase or tyrosinase-related protein (TRP-1). The epitope of MoAb J1 was also coexpressed by most, but not all, of LGP85 (a lysosomal marker) positive granules in both melanoma and non-melanoma cells, indicating that MoAb J1 recognizes a subset of lysosomal vesicles. MoAb J1 did not, however, react with vesicles with late/early (syntaxin 8/ EEA1) endosomal markers. Further examination using fluorophore-labeled pepstatin, a marker of lysosomal luminal content, confirmed that MoAb J1 specifically recognizes the luminal surface of lysosomes. These results indicate that MoAb J1 possesses an antigen epitope that is expressed in the luminal component of prelysosomal granules which are involved in the biogenesis cascade common to both melanosomes and lysosomes. We suggest that tyrosinase family protein, tyrosinase and TRP-1 are transported to melanosomes from TGN via these prelysosomal granules after being transiently transported to late endosomes.  相似文献   
2.
It is well known that it is difficult to induce an immunotolerance with allogeneic skin transplantation. We attempted to find the immunosuppressive protocol for prolonging skin allograft rejection by using interleukin-16 because IL-16 is considered one of the natural ligands to CD4 molecules. First we examined whether synergistic immunosuppressive effects of recombinant IL-16 plus anti-CD4 mAbs are induced in mixed lymphocyte reaction (MLR). Next we used IL-16-cDNA-transfected OSC-20 (human oral squamous cell carcinoma cell line) as an in vitro model of the epidermal keratinocyte equivalent and examined whether this transfectant could inhibit the activation of allogeneic T cells. Our data indicated that IL-16 clearly inhibited human MLR and that IL-16 increased synergistically the immunosuppressive effect of anti-CD4 mAb. We also used IL-16 transfectant and this produced more than 50 ng/ml of IL-16 in the supernatant by which human MLR was significantly inhibited. Furthermore, this transfectant also inhibited the activation of allogeneic lymphocytes stimulated directly with transfectant cells. These results indicated that the IL-16-producing allogeneic skin graft might have a local immunosuppressive action that would prolong graft survival.  相似文献   
3.
4.
5.
Role of light in human skin color viariation.   总被引:1,自引:0,他引:1  
The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.  相似文献   
6.
7.
The degree and type of melanogenesis, i.e., either eumelanin of pheomelanin, has been shown to be a reliable marker for the differentiation of the melanocyte. If exposed to UV light, these two melanins were reported to behave differently; eumelanin was photoprotective whereas pheomelanin was phototoxic to cultured tumor cells. Our previous study indicated that dysplastic melanocytic nevus (DMN) undergoes altered melanogenesis, forming pheomelanosome-like granules. The present study examined chemically the type and degree of melanin synthesized in 31 melanocytic nevi excised from 27 patients as compared with that occurring in the surrounding normal skin. The tissue content of eumelanin and pheomelanin was expressed by the amounts of pyrrole-2,3,5-tricarboxylic acid (PTCA) and aminohydroxyphenylalanine (AHP), respectively. We found that DMN lesions contain significantly higher amounts of pheomelanin than either common melanocytic nevus (CMN) or normal skin. Differences in pheomelanin content between DMN and CMN could not be accounted for by inherently higher levels of pheomelanin within the skin in general from DMN patients. Our present finding substantiates our previous claim that epidermal melanocytes in DMN undergo deranged melanogenesis.  相似文献   
8.
Epidermal growth factor (EGF) is secreted into sweat from secretory cells of human sweat glands. The function of EGF in sweat is poorly understood. The biological function of EGF is exerted by the binding of EGF to the receptor (EGFR) and its activation. Therefore, we immunohistochemically localized the activated form of EGFR in human eccrine and apocrine sweat glands to assess the functional importance of the EGF-EGFR system in human sweat glands. Frozen sections of human skin were stained with a monoclonal antibody (MAb) specific for tyrosine-phosphorylated (activated) EGFR and with an MAb that stains both activated and non-activated EGFR. In the secretory portion of eccrine sweat glands, nuclei of the secretory cells were stained with the anti-activated EGFR MAb. In coiled and straight portions of eccrine sweat ducts, nuclei of luminal and peripheral cells were stained with the antibody specific for activated EGFR. Luminal cell membranes and luminal cytoplasm of inner ductal cells possessed non-activated EGFR. In the secretory portion of apocrine sweat glands, activated EGFRs were present in cytoplasm and nuclei of secretory cells. These data suggest that EGF, already known to be present in the cytoplasm of secretory cells in eccrine and apocrine sweat glands, activates EGFR in the nuclei of secretory cells themselves in an intracrine manner. Because ductal cells do not express EGF, EGF in the sweat secreted from the secretory cells should activate EGFR in the ductal cells in a paracrine manner. (J Histochem Cytochem 49:597-601, 2001)  相似文献   
9.
In order to have a proper biosynthesis and secretion of the melanin-pigment granules (melanosomes) the melanocyte may require a melanosome-associated molecule that provides a signal for assembly and organization of melanogenic enzymes and proteins within the compartment of melanosomes. This study reports the presence of a Ca2+-binding phosphoprotein, p90, which can be engaged in such melanogenic function, located on the melanosomal membrane of human melanocytes. A human melanoma cDNA expression library in λ Zap II was screened with a rabbit polyclonal antibody raised against human melanosomes isolated from cultured human melanoma cells, SK MEL 23. A cDNA encoding a melanosomal protein, Mr 90 kDa, was identified through this immunoscreening. A partial sequencing of nucleotides (822 bp from the N-terminal domain) of this clone (3.8 kb) and predicted amino acids showed more than 90% homology with dog calnexin, a previously reported endoplasmic reticulum (ER) transmembrane protein. A fusion protein of this p90 with β-galactosidase expressed in Escherichia coli revealed both the immuno-cross-reactivity with anti-dog calnexin and anti-human melanosome antibodies and the Ca2+-binding property. Upon immunohistochemistry, the anti-dog calnexin antibody revealed the positive immunoreactivities with both normal and malignant human melanocytes, showing a much higher expression of antigenic epitope than nonmelanocytic human cells. The laser scanning confocal immunofluorescence, using an anti-body against a human melanosome-specific antigen (HMSA-5), and immunoelectron microscopy, using immunogold, confirmed the major localization of anti-dog calnexin antibody epitope on the melanosomes and ER.  相似文献   
10.
White Leghorn chickens have decreased feather melanin, not because pigment cells are absent, but because of a genetically determined programmed cell death that causes pigment cells to degenerate prematurely before the melanin can be deposited in the feathers. In this paper, we studied the feather germs of this breed and of control Black Minorca chickens by light and electron microscopy to elucidate further the mechanism of cell death.White Leghorn feature-germ melanocytes produced a large number of unmelanized melanosomes which, however, did not become melanized, nor were they transferred into the keratinocytes of the follicles. From day 10 of incubation onward, large autophagosomes appeared in the melanocytes of White Leghorn feather follicles. These autophagosomes were acid phosphatase positive and engulfed incompletely melanized melanosomes. They also contained melanosome degradation products. Finally, degeneration of the whole melanocyte followed. These necrotic melanocytes were engulfed by normal-looking keratinocytes of the same follicle. In Black Minorcas, on the other hand, there was a normal sequence of synthesis, melanization, and transfer of melanosomes. The melanocytes degenerated only at the time of hatching, without the formation of large autophagosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号