首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20689篇
  免费   1959篇
  国内免费   13篇
  2023年   106篇
  2022年   84篇
  2021年   518篇
  2020年   283篇
  2019年   414篇
  2018年   457篇
  2017年   358篇
  2016年   610篇
  2015年   1032篇
  2014年   1073篇
  2013年   1445篇
  2012年   1655篇
  2011年   1621篇
  2010年   1004篇
  2009年   874篇
  2008年   1243篇
  2007年   1231篇
  2006年   1105篇
  2005年   1039篇
  2004年   951篇
  2003年   868篇
  2002年   847篇
  2001年   204篇
  2000年   155篇
  1999年   172篇
  1998年   161篇
  1997年   127篇
  1996年   104篇
  1995年   110篇
  1994年   120篇
  1993年   117篇
  1992年   120篇
  1991年   109篇
  1990年   101篇
  1989年   87篇
  1988年   93篇
  1987年   77篇
  1986年   67篇
  1985年   92篇
  1984年   98篇
  1983年   63篇
  1982年   82篇
  1981年   75篇
  1980年   70篇
  1979年   78篇
  1978年   54篇
  1977年   64篇
  1976年   68篇
  1975年   69篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.

Introduction  

A proliferation-inducing ligand (APRIL) from the TNF family, owing to its role in the generation and survival of plasma cells (PCs), is currently targeted for rheumatoid arthritis (RA) treatment. However, little is known about APRIL expression in RA lesions, hampering our understanding of the way APRIL may modulate this autoimmune disease.  相似文献   
2.
3.
Heme A is a prosthetic group of all eukaryotic and some prokaryotic cytochrome oxidases. This heme differs from heme B (protoheme) at two carbon positions of the porphyrin ring. The synthesis of heme A begins with farnesylation of the vinyl group at carbon C-2 of heme B. The heme O product of this reaction is then converted to heme A by a further oxidation of a methyl to a formyl group on C-8. In a previous study (Barros, M. H., Carlson, C. G., Glerum, D. M., and Tzagoloff, A. (2001) FEBS Lett. 492, 133-138) we proposed that the formyl group is formed by an initial hydroxylation of the C-8 methyl by a three-component monooxygenase consisting of Cox15p, ferredoxin, and ferredoxin reductase. In the present study three lines of evidence confirm a requirement of ferredoxin in heme A synthesis. 1) Temperature-conditional yah1 mutants grown under restrictive conditions display a decrease in heme A relative to heme B. 2) The incorporation of radioactive delta-aminolevulinic acid into heme A is reduced in yah1 ts but not in the wild type after the shift to the restrictive temperature; and 3) the overexpression of Cox15p in cytochrome oxidase mutants that accumulate heme O leads to an increased mitochondrial concentration of heme A. The increase in heme A is greater in mutants that overexpress Cox15p and ferredoxin. These results are consistent with a requirement of ferredoxin and indirectly of ferredoxin reductase in hydroxylation of heme O.  相似文献   
4.
5.
Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression.  相似文献   
6.
Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI) influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA) is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14). Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC) as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3) and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the normal and diseased brain.  相似文献   
7.
Here we present an analytical technique for the measurement and evaluation of changes in chronologically sequenced assemblages. To illustrate the method, we studied the cultural evolution of European cooking as revealed in seven cook books dispersed over the past 800 years. We investigated if changes in the set of commonly used ingredients were mainly gradual or subject to fashion fluctuations. Applying our method to the data from the cook books revealed that overall, there is a clear continuity in cooking over the ages – cooking is knowledge that is passed down through generations, not something (re-)invented by each generation on its own. Looking at three main categories of ingredients separately (spices, animal products and vegetables), however, disclosed that all ingredients do not change according to the same pattern. While choice of animal products was very conservative, changing completely sequentially, changes in the choices of spices, but also of vegetables, were more unbounded. We hypothesize that this may be due a combination of fashion fluctuations and changes in availability due to contact with the Americas during our study time period. The presented method is also usable on other assemblage type data, and can thus be of utility for analyzing sequential archaeological data from the same area or other similarly organized material.  相似文献   
8.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.  相似文献   
9.
New material ofTrischizolagus dumitrescuae from Moldova and Ukraine is described. The variation of p3 inTrischizolagus shows the gradual shift of morphotype frequencies from the ‘Hypolagus’ pattern in Turolian through the mixture of three patterns (including ‘Nekrolagus’ morphotype) in Early Ruscinian to the dominant ‘Alilepus’ pattern in the Late Ruscinian samples. These transformations took place parallel to that of the North AmericanNekrolagus. Probably North AmericanSylvilagus, Brachylagus, andRomerolagus had an North American origin fromNekrolagus, whereas Eurasiatic and AfricanOryctolagus, Caprolagus, Nesolagus, andPoelagus could have originated in the Old World fromTrischizolagus.  相似文献   
10.
SAPHO syndrome, representing a constellation of synovitis, acne, palmo-plantar pustulosis, hyperostosis, and osteitis, is now recognized as a distinct medical entity: a reactive infectious osteitis. Genetic, immunological, and bacterial mechanisms are implicated in the development of the disease. Diagnostic problems may arise due to non-complete manifestations of SAPHO: either acne and arthritis or acne and anterior wall osteitis with an unclear pustulosis history. The interventional study of Assmann et al. is a significant addition to a long range of publications showing an association of SAPHO with Propionibacterium acnes. Randomized control studies are needed to confirm the effects of antibiotic therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号