首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2009年   2篇
  2008年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
樟子松人工林营建对土壤颗粒组成变化的影响   总被引:1,自引:0,他引:1  
植被恢复是退化生态系统的主要恢复措施,也是人类改善区域生态环境较为重要和直接的活动。目前,针对不同植被恢复方式对干旱半干旱地区土壤理化性质及生物特征开展了大量研究。然而,关于科尔沁沙地樟子松人工林营建对土壤颗粒组成变化的影响却鲜有报道。因此,以辽宁省章古台地区不同生长阶段(包括幼龄林、中龄林、成熟林和过熟林)的20块樟子松人工林样地为研究对象(以临近的7块天然草地为对照),研究了沙地樟子松人工林营建对0—100 cm土层土壤颗粒组成变化的影响。结果表明:沙质草地营建樟子松人工林后,不同土层土壤细颗粒(0.05 mm)含量均呈增加趋势,并且在0—10 cm层增加趋势明显,随土层深度增加土壤细颗粒增加量逐渐降低(除幼龄林外),但樟子松林地土壤颗粒组成仍以砂粒为主,土壤粘粒和粉粒含量极低(仅占5%左右)。随着樟子松人工林林龄的增加,土壤细颗粒变化量在0—10 cm层逐渐升高,而在10—100 cm层并无显著变化趋势。土壤细颗粒含量的变化在10—100 cm层与土壤含水量呈显著正相关,在0—10、20—40 cm和80—100 cm层与土壤全钾极显著负相关,在20—60 cm层与土壤有机碳呈显著正相关,在10—40 cm和80—100 cm层分别与土壤全磷呈显著正相关和负相关。综上所述,樟子松人工林营建可有效提高土壤细颗粒含量且在土壤表层效果明显,但短期内并不会使土壤颗粒组成发生显著变化,樟子松林改善土壤颗粒组成的同时也会使其他土壤因子发生相应的变化。  相似文献   
2.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   
3.
Guo  Xiaoping  Sun  Junming  Liang  Jinning  Zhu  Siran  Zhang  Mingyuan  Yang  Lichao  Huang  Xuejing  Xue  Kangning  Mo  Zhongxiang  Wen  Sha  Hu  Bing  Liu  Jiajuan  Ouyang  Yiqiang  He  Min 《Molecular biology reports》2022,49(10):9335-9344
Molecular Biology Reports - Lung injury caused by pulmonary inflammation is one of the main manifestations of respiratory diseases. Vasorin (VASN) is a cell-surface glycoprotein encoded by the VASN...  相似文献   
4.
Bile acid-induced lung injury has become an important topic for neonatologists after the discovery of a high incidence of infant respiratory distress syndrome complicated from maternal intrahepatic cholestasis. To explore the molecular pathway of bile acid-induced lung injury, we investigated the cytotoxicity of the glycochenodeoxycholate (GCDC) to alveolar epithelial type II cells (AECII), as the main component of bile acid. The results demonstrated that glycochenodeoxycholate induced oxidative stress, mitochondrial damage, and increased caspase activity in the primary cultured AECII. Moreover, ROS scavengers and caspase inhibitors could rescue cell death induced by GCDC in rat AECII. Our results also indicated that GCDC inhibited AECII surfactant secretion. In conclusion, this study suggested that cell death prevention and cell therapy should be considered as therapeutic strategies for infant respiratory distress syndrome complicated from maternal intrahepatic cholestasis.  相似文献   
5.

Background and Objectives

Recent years have seen a rapid increase in the number of rabies cases in China and an expansion in the geographic distribution of the virus. In spite of the seriousness of the outbreak and increasing number of fatalities, little is known about the phylogeography of the disease in China. In this study, we report an analysis of a set of Nucleocapsid sequences consisting of samples collected through the trial Chinese National Surveillance System as well as publicly available sequences. This sequence set represents the most comprehensive dataset from China to date, comprising 210 sequences (including 57 new samples) from 15 provinces and covering all epidemic regions. Using this dataset we investigated genetic diversity, patterns of distribution, and evolutionary history.

Results

Our analysis indicates that the rabies virus in China is primarily defined by two clades that exhibit distinct population subdivision and translocation patterns and that contributed to the epidemic in different ways. The younger clade originated around 1992 and has properties that closely match the observed spread of the recent epidemic. The older clade originated around 1960 and has a dispersion pattern that suggests it represents a strain associated with a previous outbreak that remained at low levels throughout the country and reemerged in the current epidemic.

Conclusions

Our findings provide new insight into factors associated with the recent epidemic and are relevant to determining an effective policy for controlling the virus.  相似文献   
6.
Elevated extracellular free fatty acids (FFAs) can induce pancreatic beta cell apoptosis, thereby contributing to the pathogenesis of type 2 diabetes mellitus (T2D). Mitochondrial dysfunction has been implicated in FFA-induced beta cell apoptosis. However, molecular mechanisms linking mitochondrial dysfunction and FFA-induced beta cell apoptosis are not clear. Dynamin-related protein 1 (DRP-1) is a mitochondrial fission modulator. In this study, we investigated its role in FFA-induced INS-1 beta cell apoptosis. DRP-1 protein was promptly induced in INS-1 cells and rat islets after stimulation by FFAs, and this DRP-1 upregulation was accompanied by increased INS-1 cell apoptosis. Induction of DRP-1 expression significantly promoted FFA-induced apoptosis in DRP-1 WT (DRP-1 wild type) inducible INS-1-derived cell line, but not in DRP-1K38A (a dominant negative mutant of DRP-1) inducible INS-1-derived cell line. To validate these in vitro results, we transplanted DRP-1 WT or DRP-1 K38A cells into renal capsules of streptozotocin (STZ)-treated diabetic mice to study the apoptosis in xenografts. Consistent with the in vitro results, the over-expression of DRP-1 led to aggravated INS-1-derived cell apoptosis triggered by FFAs. In contrast, dominant-negative suppression of DRP-1 function as represented by DRP-1 K38A significantly prevented FFA-induced apoptosis in xenografts. It was further demonstrated that mitochondrial membrane potential decreased, while cytochrome c release, caspase-3 activation, and generation of reactive oxygen species (ROS) were enhanced by the induction of DRP-1WT, but prevented by DRP-1 K38A in INS-1-derived cells under FFA stimulation. These results indicated that DRP-1 mediates FFA-induced INS-1-derived cell apoptosis, suggesting that suppression of DRP-1 is a potentially useful therapeutic strategy for protecting against beta cell loss that leads to type 2 diabetes.  相似文献   
7.
8.
Identifying high specificity and sensitivity biomarkers has always been the focus of research in the field of non-invasive cancer diagnosis. Exosomes are extracellular vesicles with a lipid bilayer membrane that can be released by all types of cells, which contain a variety of proteins, lipids, and a variety of non-coding RNAs. Increasing research has shown that the lipid bilayer can effectively protect the nucleic acid in exosomes. In cancers, tumor cell-derived exosomal circRNAs can act on target cells or organs through the transport of exosomes, and then participate in the regulation of tumor development and metastasis. Since exosomes exist in various body fluids and circRNAs in exosomes exhibit high stability, exosomal circRNAs have the potential as biomarkers for early and minimally invasive cancer diagnosis and prognosis judgment. In this review, we summarized circRNAs and their biological roles in cancers, with the emerging value biomarkers in cancer diagnosis, disease judgment, and prognosis observation. In addition, we briefly compared the advantages of exosomal circRNAs as biomarkers and the current obstacles in the exosome isolation technology, shed light to the future development of this technology.  相似文献   
9.
Long non‐coding RNAs (lncRNAs) play important roles in the pathogenesis of brain and neurodegenerative disorders. As far as we know, the functions and potential mechanisms of small nucleolar RNA host gene 6 (SNHG6) in ischaemic stroke have not been explored. This study aimed to examine the functional role of SNHG6 in the ischaemic stroke. Middle cerebral artery occlusion (MCAO) in mice and the oxygen glucose deprivation (OGD)‐induced injury in neuronal cells were applied to mimic ischaemic stroke. TTC staining, quantitative real‐time PCR, cell apoptosis assay, caspase‐3 activity assay, Western blot, RNA immunoprecipitation and luciferase reporter assay were performed to evaluate the function and possible mechanisms of SNHG6 in the pathogenesis of ischaemic stroke. The results show that SNHG6 expression was significantly increased both OGD‐induced neuronal cells and MCAO model mice. In vitro results showed that inhibition of SNHG6 increased cell viability, inhibited cell apoptosis and caspase‐3 activity in OGD‐induced neuronal cells. Consistently, knockdown of SNHG6 reduced brain infarct size and improved neurological scores in the MCAO mice. Mechanistic study further revealed that SNHG6 functioned as a competing endogenous RNA (ceRNA) for miR‐181c‐5p, which in turn repressed its downstream target of Bcl‐2 interacting mediator of cell death (BIM) and inhibiting cell apoptosis. This study revealed a novel function of SNHG6 in the modulating neuronal apoptosis in the ischaemic stroke model, and the role of SNHG6 in the regulating of neuronal apoptosis was at least partly via targeting miR‐181c‐5p/BIM signalling pathway.  相似文献   
10.
Zhao Y  Yin X  Qin H  Zhu F  Liu H  Yang W  Zhang Q  Xiang C  Hou P  Song Z  Liu Y  Yong J  Zhang P  Cai J  Liu M  Li H  Li Y  Qu X  Cui K  Zhang W  Xiang T  Wu Y  Zhao Y  Liu C  Yu C  Yuan K  Lou J  Ding M  Deng H 《Cell Stem Cell》2008,3(5):475-479
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号