首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24492篇
  免费   1820篇
  国内免费   13篇
  2023年   64篇
  2022年   54篇
  2021年   392篇
  2020年   285篇
  2019年   371篇
  2018年   613篇
  2017年   513篇
  2016年   843篇
  2015年   1350篇
  2014年   1483篇
  2013年   1670篇
  2012年   2164篇
  2011年   2042篇
  2010年   1323篇
  2009年   1100篇
  2008年   1597篇
  2007年   1403篇
  2006年   1252篇
  2005年   1147篇
  2004年   1105篇
  2003年   917篇
  2002年   884篇
  2001年   656篇
  2000年   655篇
  1999年   441篇
  1998年   179篇
  1997年   139篇
  1996年   119篇
  1995年   96篇
  1994年   86篇
  1993年   77篇
  1992年   165篇
  1991年   134篇
  1990年   90篇
  1989年   108篇
  1988年   75篇
  1987年   66篇
  1986年   71篇
  1985年   60篇
  1984年   55篇
  1983年   38篇
  1982年   29篇
  1981年   24篇
  1978年   28篇
  1977年   23篇
  1976年   33篇
  1975年   30篇
  1973年   33篇
  1971年   24篇
  1969年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The pygmy right whale, Caperea marginata , is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low‐frequency sounds, but its hearing limit is relatively high. The presence of a well‐developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea‐balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level.  相似文献   
2.
Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.  相似文献   
3.
4.
5.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   
6.
Ahn  Jae Hyun  Kwak  Jiwon  Lee  Jae-Hoon  Lee  Soo Suk 《Molecular biology reports》2018,45(4):611-619
Molecular Biology Reports - We present here on an innovative assay for detecting miRNAs using a uniquely designed specific extension sequence that provides high efficiency and accuracy. This assay...  相似文献   
7.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
8.
Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5]  相似文献   
9.
Aeromonas bacteria (110 strains) from a variety of clinical, food and environmental sources, were identified using routine biochemical tests. Concurrently they were tested aerobically and anaerobically for their ability to perform synergistic haemolysis with Staphylococcus aureus (the 'CAMP' reaction). Results did not support a reported observation that the 'CAMP' reaction can he used to facilitate speciation of Aeromonas bacteria.  相似文献   
10.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号