首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Junctophilin-2 (JP2), a membrane-binding protein that provides a structural bridge between the plasmalemma and sarcoplasmic reticulum, is essential for precise Ca2+-induced Ca2+ release during excitation-contraction coupling in cardiomyocytes. In animal and human failing hearts, expression of JP2 is decreased markedly, but the molecular mechanisms underlying JP2 down-regulation remain incompletely defined. In mouse hearts, ischemia/reperfusion injury resulted in acute JP2 down-regulation, which was attenuated by pretreatment with the calpain inhibitor MDL-28170 or by transgenic overexpression of calpastatin, an endogenous calpain inhibitor. Using a combination of computational analysis to predict calpain cleavage sites and in vitro calpain proteolysis reactions, we identified four putative calpain cleavage sites within JP2 with three N-terminal and one C-terminal cleavage sites. Mutagenesis defined the C-terminal region of JP2 as the predominant calpain cleavage site. Exogenous expression of putative JP2 cleavage fragments was not sufficient to rescue Ca2+ handling in JP2-deficient cardiomyocytes, indicating that cleaved JP2 is non-functional for normal Ca2+-induced Ca2+ release. These data provide new molecular insights into the posttranslational regulatory mechanisms of JP2 in cardiac diseases.  相似文献   

2.
Although processing of mitochondrial apoptosis-inducing factor (AIF) is essential for its function during apoptosis in most cell types, the detailed mechanisms of AIF cleavage remain elusive. Recent findings indicate that the proteolytic process is Ca2+-dependent and that it is mediated by a calpain located in the mitochondrial intermembrane space. We can now report that, in addition to a sustained intracellular Ca2+ elevation, enhanced formation of reactive oxygen species (ROS) is a prerequisite step for AIF to be cleaved and released from mitochondria in staurosporine-treated cells. These events occurred independent of the redox state of the mitochondria and were not influenced by binding of pyridine nucleotides to AIF. Chelation of cytosolic Ca2+ by BAPTA/AM suppressed the elevation of both Ca2+ and ROS, suggesting that the Ca2+ rise was the most upstream signal required for AIF processing. We could further show that the stimulated ROS production leads to oxidative modification (carbonylation) of AIF, which markedly increases its rate of cleavage by calpain. Accordingly, pretreatment of the cells with antioxidants blocked AIF carbonylation, as well as its subsequent cleavage and release from the mitochondria. Combined, our data provide evidence that ROS-mediated, posttranslational modification of AIF is critical for its cleavage by calpain and thus for AIF-mediated cell death.  相似文献   

3.
Higher levels of focal adhesion kinase (FAK) are expressed in colon metastatic carcinomas. However, the signaling pathways and their mechanisms that control cell adhesion and motility, important components of cancer metastasis, are not well understood. We sought to identify the integrin-mediated mechanism of FAK cleavage and downstream signaling as well as its role in motility in human colon cancer GEO cells. Our results demonstrate that phosphorylated FAK (tyrosine 397) is cleaved at distinct sites by integrin signaling when cells attach to collagen IV. Specific blocking antibodies (clone P1E6) to integrin alpha2 inhibited FAK activation and cell motility (micromotion). Ectopic expression of the FAK C-terminal domain FRNK attenuated FAK and ERK phosphorylation and micromotion. Calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal blocked FAK cleavage, cell adhesion, and micromotion. Antisense approaches established an important role for mu-calpain in cell motility. Expression of wild type mu-calpain increased cell micromotion, whereas its point mutant reversed the effect. Further, cytochalasin D inhibited FAK phosphorylation and cleavage, cell adhesion, locomotion, and ERK phosphorylation, thus showing FAK activation downstream of actin assembly. We also found a pivotal role for FAK Tyr(861) phosphorylation in cell motility and ERK activation. Our results reveal a novel functional connection between integrin alpha2 engagement, FAK, ERK, and mu-calpain activation in cell motility and a direct link between FAK cleavage and enhanced cell motility. The data suggest that blocking the integrin alpha2/FAK/ERK/mu-calpain pathway may be an important strategy to reduce cancer progression.  相似文献   

4.
Calcium supplementation decreases the incidence of colon cancer in animal models and may prevent colon cancer in man. Potential mechanisms include binding of mitogens and direct effects of calcium on colonic epithelial cells. In this study, the effects of extracellular calcium on epithelial cell growth and differentiation were studied in three colon carcinoma and two colonic adenoma cell lines. The characteristics studied included morphology, cell cycle kinetics, [Ca2+]IC (intracellular calcium concentration), proliferation, and expression of differentiation markers such as carcinoembryonic antigen (CEA) and alkaline phosphatase (AP). Sodium butyrate (NaB) and 1,25-dihydroxyvitamin D3 were used as controls in the latter three assays as these two agents are known differentiating agents. Alteration of [Ca+2]EC (extracellular calcium concentration) did not affect carcinoembryonic antigen (CEA) or alkaline phosphatase (AP) expression. NaB enhanced the expression of AP three-fold and CEA five-fold. This effect was augmented by increasing [Ca2+]EC. The exposure of cells to 1,25-(OH)2-Vitamin D3 increased CEA but not AP. [Ca2+]IC increased in response to 1,25-(OH)2-vitamin D3 and NaB but not with variation in [Ca2+]EC. Increased [Ca2+]EC inhibited proliferation of well-differentiated cells, but had no effect on poorly-differentiated cells. Morphological studies showed that extracellular calcium was necessary for normal cell—cell interactions. These studies have demonstrated direct effects of calcium on colonic epithelial cells which may contribute to the protective effects of dietary calcium against colon cancer. Loss of responsivess to the antiprotective effects of [Ca2+]EC with de-differentiation suggests that calcium supplementation may be most beneficial prior to the development of neoplastic changes in colonic epithelium.  相似文献   

5.
Abnormal regulation of Ca2+ mediates tumorigenesis and Ca2+ channels are reportedly deregulated in cancers, indicating that regulating Ca2+ signaling in cancer cells is considered as a promising strategy to treat cancer. However, little is known regarding the mechanism by which Ca2+ affects cancer cell death. Here, we show that 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (20-GPPD), a metabolite of ginseng saponin, causes apoptosis of colon cancer cells through the induction of cytoplasmic Ca2+. 20-GPPD decreased cell viability, increased annexin V-positive early apoptosis and induced sub-G1 accumulation and nuclear condensation of CT-26 murine colon cancer cells. Although 20-GPPD-induced activation of AMP-activated protein kinase (AMPK) played a key role in the apoptotic death of CT-26 cells, LKB1, a well-known upstream kinase of AMPK, was not involved in this activation. To identify the upstream target of 20-GPPD for activating AMPK, we examined the effect of Ca2+ on apoptosis of CT-26 cells. A calcium chelator recovered 20-GPPD-induced AMPK phosphorylation and CT-26 cell death. Confocal microscopy showed that 20-GPPD increased Ca2+ entry into CT-26 cells, whereas a transient receptor potential canonical (TRPC) blocker suppressed Ca2+ entry. When cells were treated with a TRPC blocker plus an endoplasmic reticulum (ER) calcium blocker, 20-GPPD-induced calcium influx was completely inhibited, suggesting that the ER calcium store, as well as TRPC, was involved. In vivo mouse CT-26 allografts showed that 20-GPPD significantly suppressed tumor growth, volume and weight in a dose-dependent manner. Collectively, 20-GPPD exerts potent anticarcinogenic effects on colon carcinogenesis by increasing Ca2+ influx, mainly through TRPC channels, and by targeting AMPK.  相似文献   

6.
The association of an endogenous, Ca2+-dependent cysteine-protease with the junctional sarcoplasmic reticulum (SR) is demonstrated. The activity of this protease is strongly stimulated by dithiothreitol (DTT), cysteine and β-mercaptoethanol, and is inhibited by iodoacetamide, mercuric chloride and leupeptin, but not by PMSF. The activity of this thiol-protease is dependent on Ca2+ with half-maximal activity obtained at 0.1 μm and maximal activity at 10 μm. Mg2+ is also an activator of this enzyme (CI50=22 μm). These observations, together with the neutral pH optima and inhibition by the calpain I inhibitor, suggest that this enzyme is of calpain I type. This protease specifically cleaves the ryanodine receptor monomer (510 kD) at one site to produce two fragments with apparent molecular masses of 375 and 150 kD. The proteolytic fragments remain associated as shown by purification of the cleaved ryanodine receptor. The calpain binding site is identified as a PEST (proline, glutamic acid, serine, threonine-rich) region in the amino acid sequence GTPGGTPQPGVE, at positions 1356–1367 of the RyR and the cleavage site, the calmodulin binding site, at residues 1383–1400. The RyR cleavage by the Ca2+-dependent thiol-protease is prevented in the presence of ATP (1–5 mm) and by high NaCl concentrations. This cleavage of the RyR has no effect on ryanodine binding activity but stimulates Ca2+ efflux. A possible involvement of this specific cleavage of the RyR/Ca2+ release channel in the control of calpain activity is discussed.  相似文献   

7.
8.
9.
The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca2+-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd3+ or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca2+]i. Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca2+ channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca2+ influx to a small Ca2+-activated K+ channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics—while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca2+ signaling that may play a role in tumor progression.  相似文献   

10.
The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca2+-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd3+ or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca2+]i. Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca2+ channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca2+ influx to a small Ca2+-activated K+ channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics—while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca2+ signaling that may play a role in tumor progression.  相似文献   

11.
During invasion and egress from their host cells, Apicomplexan parasites face sharp changes in the surrounding calcium ion (Ca2+) concentration. Our work with Toxoplasma gondii provides evidence for Ca2+ influx from the extracellular milieu leading to cytosolic Ca2+ increase and enhancement of virulence traits, such as gliding motility, conoid extrusion, microneme secretion, and host cell invasion. Assays of Mn2+ and Ba2+ uptake do not support a canonical store-regulated Ca2+ entry mechanism. Ca2+ entry was blocked by the L-type Ca2+ channel inhibitor nifedipine and stimulated by the increase in cytosolic Ca2+ and by the specific L-type Ca2+ channel agonist Bay K-8644. Our results demonstrate that Ca2+ entry is critical for parasite virulence. We propose a regulated Ca2+ entry mechanism activated by cytosolic Ca2+ that has an enhancing effect on invasion-linked traits.  相似文献   

12.
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait.  相似文献   

13.
Intracellular Ca2+ is one of the crucial signalings that modulate various cellular functions. The dysregulation of Ca2+ homeostasis has been suggested as an important event in driving the expression of the malignant phenotypes, such as proliferation, migration, invasion, and metastasis. Cell migration is an early prerequisite for tumor metastasis that has a significant impact on patient prognosis. During cell migration, the exquisite spatial and temporal organization of intracellular Ca2+ provides a rapid and robust way for the selective activation of signaling components that play a central role in cytoskeletal reorganization, traction force generation, and focal adhesion dynamics. A number of known molecular components involved in Ca2+ influx pathways, including stromal interaction molecule (STIM)/Orai-mediated store-operated Ca2+ entry (SOCE) and the Ca2+-permeable transient receptor potential (TRP) channels, have been implicated in cancer cell migration and tumor metastasis. The clinical significance of these molecules, such as STIM proteins and the TRPM7 channel, in tumor progression and their diagnostic and prognostic potentials have also been demonstrated in specific cancer types. In this review, we summarize the recent advances in understanding the important roles and regulatory mechanisms of these Ca2+ influx pathways on malignant behaviors of tumor cells. The clinical implications in facilitating current diagnostic and therapeutic procedures are also discussed.  相似文献   

14.
Cardiac sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is central to the maintenance of normal Ca2+ homeostasis and contraction. Studies indicate that the Ca2+-activated protease calpain cleaves NCX1. We hypothesized that calpain is an important regulator of NCX1 in response to pressure overload and aimed to identify molecular mechanisms and functional consequences of calpain binding and cleavage of NCX1 in the heart. NCX1 full-length protein and a 75-kDa NCX1 fragment along with calpain were up-regulated in aortic stenosis patients and rats with heart failure. Patients with coronary artery disease and sham-operated rats were used as controls. Calpain co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes and left ventricle lysate. Immunoprecipitations, pull-down experiments, and extensive use of peptide arrays indicated that calpain domain III anchored to the first Ca2+ binding domain in NCX1, whereas the calpain catalytic region bound to the catenin-like domain in NCX1. The use of bioinformatics, mutational analyses, a substrate competitor peptide, and a specific NCX1-Met369 antibody identified a novel calpain cleavage site at Met369. Engineering NCX1-Met369 into a tobacco etch virus protease cleavage site revealed that specific cleavage at Met369 inhibited NCX1 activity (both forward and reverse mode). Finally, a short peptide fragment containing the NCX1-Met369 cleavage site was modeled into the narrow active cleft of human calpain. Inhibition of NCX1 activity, such as we have observed here following calpain-induced NCX1 cleavage, might be beneficial in pathophysiological conditions where increased NCX1 activity contributes to cardiac dysfunction.  相似文献   

15.
Conclusions While it is generally accepted that Ca2+ plays an important regulatory role in the physiology of a number of non-excitable cells, the mechanisms which regulate intracellular [Ca2+ are far from well established. Ca2+ transporting mechanisms which distribute Ca2+ intracellularly as well as those which allow influx of extracellular Ca2+ are involved in mediating intracellular Ca2+ homestasis. In this paper we have described recent studies on the regulation of the Ca2+ influx system in the data, it appears that the process of Ca2+ entry is extremely complex and may involve several levels of regulation. Understanding the molecular basis of these regulatory mechanisms presents a challeging problem for future studies.  相似文献   

16.
Calcium (Ca2+) signals are involved in important checkpoints in cell death pathways and promote both apoptosis and autophagy. However, the relationship between autophagy and apoptosis in response to Ca2+ level elevation is poorly understood. Here, we provided evidence that the influx of extracellular Ca2+ triggered by Trichokonin VI (TK VI), an antimicrobial peptide, induced calpain-dependent apoptosis and autophagy in hepatocellular carcinoma (HCC) cells. Remarkably, TK VI preferentially induced apoptosis that was associated with calpain-mediated Bax and Atg5 cleavage, which resulted in the collapse of the mitochondrial membrane potential and cytochrome c release. Interestingly, truncated, but not full-length Atg5, associated with Bcl-xL and promoted the intrinsic pathway. Moreover, TK VI treatment induced reactive oxygen species (ROS) accumulation, an effect in which Bak might play a major role. This accumulation of ROS resulted in the subsequent disposal of damaged mitochondria within autophagosomes via Atg5-mediated and mitochondria-selective autophagy. Both the inhibition of calpain activity and Bax deficiency activated a switch that promoted an enhancement of autophagy. The inhibition of both apoptosis and autophagy significantly attenuated the TK VI cytotoxicity, indicating that the two processes had stimulatory effects during TK VI-meditated cell death. These results suggested that calpain, Bak and Atg5 were molecular links between autophagy and apoptosis and revealed novel aspects of the crosstalk between these two processes. The potential of TK VI is proposed as a promising anticancer agent for its well-characterized activity of Ca2+ agonist and as a possible novel therapeutic strategy that acts on cancer cell mitochondria.  相似文献   

17.
Senescent cells accumulate in aged tissue and are causally linked to age-associated tissue degeneration. These non-dividing, metabolically active cells are highly secretory and alter tissue homeostasis, creating an environment conducive to metastatic disease progression. IL-1α is a key senescence-associated (SA) proinflammatory cytokine that acts as a critical upstream regulator of the SA secretory phenotype (SASP). We established that SA shifts in steady-state H2O2 and intracellular Ca2+ levels caused an increase in IL-1α expression and processing. The increase in intracellular Ca2+ promoted calpain activation and increased the proteolytic cleavage of IL-1α. Antioxidants and low oxygen tension prevented SA IL-1α expression and restricted expression of SASP components IL-6 and IL-8. Ca2+ chelation or calpain inhibition prevented SA processing of IL-1α and its ability to induce downstream cytokine expression. Conditioned medium from senescent cells treated with antioxidants or Ca2+ chelators or cultured in low oxygen markedly reduced the invasive capacity of proximal metastatic cancer cells. In this paracrine fashion, senescent cells promoted invasion by inducing an epithelial-mesenchymal transition, actin reorganization, and cellular polarization of neighboring cancer cells. Collectively, these findings demonstrate how SA alterations in the redox state and Ca2+ homeostasis modulate the inflammatory phenotype through the regulation of the SASP initiator IL-1α, creating a microenvironment permissive to tumor invasion.  相似文献   

18.
Colon cancer cells, like other types of cancer cells, undergo the remodeling of the intracellular Ca2+ homeostasis that contributes to cancer cell hallmarks including enhanced cell proliferation, migration, and survival. Colon cancer cells display enhanced store-operated Ca2+ entry (SOCE) compared with their non-cancer counterparts. Colon cancer cells display an abnormal expression of SOCE molecular players including Orai1 and TRPC1 channels, and the stromal interacting molecule (STIM) 1 and 2. Interestingly, upregulation of Orai1 and TRPC1 channels and their contribution to SOCE are associated with cancer malignancy in colon cancer cells. In a specific cellular model of colon cancer, whereas in non-cancer colon cells SOCE is composed of the Ca2+ release activated (CRAC) currents, in colon cancer cells SOCE is composed of CRAC- and cationic, non-selective store operated (SOC) currents. Former SOCs are mediated by TRPC1 channels. Moreover, colon cancer cells also display dysregulation of the expression of 1,4,5-triphosphate receptors (IP3R) that could contribute to the enhanced SOCE. Another important factor underlying the enhanced SOCE is the differential mitochondrial modulation of the CRAC and SOC currents in non-cancer and colon cancer cells. In colon cancer cells, mitochondria take up more Ca2+ that prevent the Ca2+-dependent inactivation of the SOCs, leading to sustained Ca2+ entry. Notably, the inhibition of SOCE in cancer colon cells abolishes their cancer hallmarks. Robust evidence has shown the efficiency of non-steroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO) to reverse the enhanced cell proliferation, migration, and apoptosis resistance of cancer cells. In colon cancer cells, both NSAIDs and DFMO decrease SOCE, but they target different molecular components of SOCE. NSAIDs decrease the Ca2+ uptake by mitochondria, limiting their ability to prevent the Ca2+-dependent inactivation of the SOCs that underlie SOCE. On the other hand, DFMO inhibits the expression of TRPC1 channels in colon cancer cells, eliminating their contribution to SOCE. The identification of players of SOCE in colon cancer cells may help to better understand the remodeling of the Ca2+ homeostasis in cancer. Importantly, the use of different pharmacological tools that target different SOCE molecular players in colon cancer cells may play a pivotal role in designing better chemoprevention strategies.  相似文献   

19.
Calpain inhibitors induce pertussis toxin (PTx)-sensitive chemotaxis in human neutrophils and monocytes. Here, we show that various calpain inhibitors (PD150606, PD151746, N-acetyl-Leu-Leu-Nle-CHO [ALLN], N-acetyl-Leu-Leu-Met-CHO [ALLM], and calpeptin) and γ-secretase inhibitor I induced PTx-sensitive increase in cytoplasmic free Ca2+ ([Ca2+]i) in human neutrophils and neutrophil migration. HEK-293 cells stably expressing human formyl peptide receptor (hFPR) or hFPR-like 1 (hFPRL1) displayed stimulus-specific increase in [Ca2+]i in response to calpain inhibitors (PD150606, PD151746, ALLN, ALLM, MG-132, and calpeptin), γ-secretase inhibitor I, and N-formyl-Met-Leu-Phe. Parent HEK-293 cells also displayed PTx-sensitive increase in [Ca2+]i in response to calpeptin and γ-secretase inhibitor I, whereas they displayed PTx-resistant increase in [Ca2+]i in response to MG-132. MDL-28170 induced neither an increase in [Ca2+]i in neutrophils and HEK-293 cells nor neutrophil migration. Ionomycin-induced cleavage of talin (a substrate of calpain) in neutrophils was inhibited by all inhibitors used here. These findings suggest that potent calpain inhibitors could stimulate phagocyte functions via activation of hFPR, hFPRL1 and/or other G-protein coupled receptors depending on the inhibitors used.  相似文献   

20.
The Ca2+ paradox represents a good model to study Ca2+ overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca2+ paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca2+ paradox was elicited by perfusing isolated rat hearts with Ca2+-free KH media for 3 min or 5 min followed by 30 min of Ca2+ repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca2+ repletion. Ca2+ repletion of the once 3-min Ca2+ depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca2+ for 5 min had the same effects on injury as the 3-min Ca2+ depletion, except that the LVEDP in the 5-min Ca2+ depletion group was lower than the level in the 3-min Ca2+ depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca2+ depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca2+ repletion-induced increase in calpain activity in 3 min or 5 min Ca2+ depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca2+ paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca2+ paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号